
CoAP
The Web-based Application-layer Protocol

for the Internet of Things

Matthias Kovatsch

Internet of Things and Smart Cities Ph.D. School 2014

> COLLECT

Follow the Slides

http://goo.gl/anfy5w

http://goo.gl/anfy5w
http://goo.gl/anfy5w

About the Speaker

Matthias Kovatsch

Researcher at ETH Zurich,Switzerland
with focus on Web technology for the IoT

IETF contributor in CoRE and LWIG

Author of Californium (Cf),
Erbium (Er), and Copper (Cu)

http://people.inf.ethz.ch/mkovatsc

https://www.ethz.ch/
http://www.ietf.org/
http://tools.ietf.org/wg/core/
http://tools.ietf.org/wg/lwig/
http://www.ietf.org/
https://www.eclipse.org/californium
http://www.contiki-os.org/
https://addons.mozilla.org/en-US/firefox/addon/copper-270430
http://www.contiki-os.org/
http://people.inf.ethz.ch/mkovatsc
http://people.inf.ethz.ch/mkovatsc

Agenda

The Web of Things

The Constrained Application Protocol

Building RESTful IoT Applications

Getting Started

Erbium (Er) REST Engine

Californium (Cf) CoAP framework

mjCoAP

Web mashups

Well-known patterns

The Web of Things (WoT)
The Application Layer for the IoT

Cloud
services

Interoperability and Usability

HTTP libraries exist for most platforms
HTTP is the basis for many of our services

Web patterns are well-known
Scripting increases productivity

“Kids” can program Web applications
The Web fosters innovation!

Tiny Resource-constrained Devices

Class 1 devices
~100KiB Flash
~10KiB RAM

Low-power networks

Tiny Resource-constrained Devices

Target
of less than $1

TCP and HTTP
are not a good fit

Constrained Application Protocol

RESTful protocol designed from scratch
Transparent mapping to HTTP
Additional features for IoT applications

Message Sub-layer
Reliability

UDP DTLS …

Request-Response Sub-layer
RESTful interaction

GET, POST, PUT, DELETE
URIs and Internet Media Types

Deduplication
Optional retransmissions

C
o

A
P

Constrained Application Protocol

Binary protocol
◾ Low parsing complexity

◾ Small message size

Options
◾ Numbers in IANA registry

◾ Type-Length-Value

◾ Special option header
marks payload if present

0 – 8 Bytes Token
Exchange handle for client

4-byte CoAP Base Header
Version | Type | T-len | Code | ID

Options
Location, Max-Age, ETag, …

Marker
0xFF

Payload
Representation

Constrained Application Protocol

CoAP Option Encoding

Delta encoding
◾ Option number calculated

by summing up the deltas
◾ Compact encoding
◾ Enforces correct order

Extended header
◾ Jumps to high opt. numbers
◾ No limitation on opt. length
◾ Possible values

+0 bytes: 0 – 12
+1 byte: 13 – 268
+2 bytes: 269 – 65,804

Extended Option Delta
+1 byte for Delta=13

+2 bytes for Delta=14

1-byte Option Header
4-bit Delta | 4-bit Length

Extended Option Length
+1 byte for Length=13

+2 bytes for Length=14

Option Value
empty, opaque, uint, or string

max. UDP

length is 65k

Option Metadata

◾ Critical (C)
◽ Message must be rejected if unknown

◽ Elective options be be silently dropped

◾ UnSafe (U)
◽ Proxies may forward messages

with unknown options

◽ Unless they are marked unsafe

◾ NoCacheKey (N)
◽ Option is not part of the cache key

when all three bits are 1 and U=0

N U C

0 1 2 3 4 5 6 7

b
ig

 e
n

d
ia

n

LSBOption Number

Registered Options (RFC 7252)
C U N R Name Format Length Default

1 x x If-Match opaque 0-8 (none)

3 x x - Uri-Host string 1-255 IP literal

4 x ETag opaque 1-8 (none)

5 x If-None-Match empty 0 (none)

7 x x - Uri-Port uint 0-2 UDP port

8 x Location-Path string 0-255 (none)

11 x x - x Uri-Path string 0-255 (none)

12 Content-Format uint 0-2 (none)

14 x - Max-Age uint 0-4 60

15 x x - x Uri-Query string 0-255 (none)

17 x Accept uint 0-2 (none)

20 x Location-Query string 0-255 (none)

35 x x - Proxy-Uri string 1-1034 (none)

39 x x - Proxy-Scheme string 1-255 (none)

60 x Size1 uint 0-4 (none)

Example

Request
◾ POST
◾ Resource /examples/postbox
◾ Content-Format text/plain
◾ 1000 bytes payload

Encoding
◾ Uri-Path is Option 11
◾ Uri-Path is repeatable
◾ Content-Format is 12
◾ text/plain is 0
◾ Size1 is Option 60
◾ Option Number =

Current number
+ Delta + Extended Delta
= 12 + 13 + 35

1-byte Option Header
11 | 8

Option Value
examples

Option Value
postbox

1-byte Option Header
0 | 7

1-byte Option Header
13 | 2

1-byte Extended Option Delta
35

Option Value
1000

1-byte Option Header
1 | 0

Retransmission of Confirmables
ServerClient

CON

ACK

ACK

CON

CON
Retransmission after 2–3 s
Randomized timeout to
avoid synchronization
effects

Binary Exponential
Back-Off
Timeout is doubled after
each retransmission

Retransmissions stop when
CON is acknowledged or
4 retransmissions failed
(here 3rd one is successful)

Non-Confirmables
are best-effort messages

without retransmissions

1

2

3

CON

Receiver must send an
Acknowledgement (ACK)

for CONs

Requests and Responses
ServerClient

RequestCON

Response

ACK

Token: 0x00CAFE00

0x4711GET0
1 4

C
O
N

Uri-Path: hello

Uri-Path: world

Token: 0x00CAFE00

Content-Format: text/plain

0xFF Hello world

0x47112.050
1 4

A
C
K

ACK is matched to CON
through MID

Response is matched to
request through Token
why?

MID

Responses can be
piggybacked on ACKs

Separate Responses
ServerClient

Token: 0xBEEF00

0x4712GET0
1 3

C
O
N

Uri-Path: separate

Token: 0xBEEF00

Content-Format: text/plain

0xFF hello separate

0x08152.050
1 3

C
O
N

Empty

ACK

EmptyACK

RequestCON
0x47120.000

1 0

A
C
K

Response

CON

0x08150.000
1 0

A
C
K

Separate Response
has different MID

ACKs are empty
when the code is zero

Implicit Acknowledgements
ServerClient

Token: 0x00FEED

0x4713GET0
1 3

C
O
N

Uri-Path: separate

Token: 0x00FEED

Content-Format: text/plain

0xFF hello separate

0x08162.050
1 3

C
O
N

EmptyACK

RequestCON
0x47120.000

1 0

A
C
K

Response

CON

0x08160.000
1 0

A
C
K

Empty

ACK

Response implicitly ack’s CON
Retransmissions MAY be stopped

Mixed Separate Responses
ServerClient

Token: 0x0DECAF

0x4714GET0
1 3

N
O
N

Uri-Path: surprise

Token: 0x0DECAF

Content-Format: text/plain

0xFF hello surprise

0x08172.050
1 3

C
O
N

EmptyACK

RequestNON

Response

CON

0x08170.000
1 0

A
C
K

NON requests always
elicit separate responses
(can be NON or CON)

Reset Messages
ServerClient

Token: 0xDEAD

0x4715GET0
1 2

C
O
N

Uri-Path: separate

Token: 0xDEAD

Content-Format: text/plain

0xFF hello separate

0x08182.050
1 2

C
O
N

Empty

ACK

EmptyRST

RequestCON
0x47150.000

1 0

A
C
K

Response

CON

0.000
1 0

R
S
T

Cannot match token
and must reject CON

NONs can be rejected
or silently dropped

Reboot

0x0818

Deduplication

Worst case transmission

Store sender+MID to filter duplicates

Receiver

Sender

each ACK is lost

delayed

MAX_LATENCY

MAX_
TRANSMIT_

SPAN

PROCESSING_DELAY

MAX_LATENCY

EXCHANGE_LIFETIME

NON_LIFETIME
Can be relaxed!

(idempotent requests)

Features for the IoT

Client

Resource state at origin server

Replicated state at client

N
o
tifica

tio
n

N
o
tifica

tio
n

N
o
tifica

tio
n

Notification
lost

N
o
tifica

tio
n

M
ax-A

ge

G
ET

O
b

se
rv

e

Observing Resources

Server

Observe illustration courtesy of Klaus Hartke

Response with
Observe opt.

Client

Resource state at origin server

Replicated state at client

N
o
tifica

tio
n

N
o
tifica

tio
n

N
o
tifica

tio
n

N
o
tifica

tio
n

G
ET

O
b

se
rv

e

Observing Resources - CON Mode

Server R
etra

nsm
issio

n
Observe illustration courtesy of Klaus Hartke

Mode depends on application
 ~ random events: CON
 ~ periodic samples: NON

all-lights.floor-d.example.comGET /status/power

PUT /control/onoff

PUT /control/color
#00FF00

Group Communication

What exactly is RESTful
group communication?

Resource Discovery

Based on Web Linking (RFC5988)

Extended to Core Link Format (RFC6690)

Decentralized discovery Multicast Discovery

Infrastructure-based Resource Directories

</config/groups>;rt="core.gp";ct=39,
</sensors/temp>;rt="ucum.Cel";ct="0 50";obs,
</large>;rt="block";sz=1280,
</device>;title="Device management"

GET /.well-known/core

Alternative Transports

e.g.,
Short Message Service (SMS)

Addressable through URIs

Could power up subsystems for
IP connectivity after SMS signal

* illustration only, +123456789 unfortunately not allowed by URI
RFC

coap+sms://+123456789/bananas/temp*

Security

Based on DTLS (TLS/SSL for Datagrams)

Focus on Elliptic Curve Cryptography (ECC)

Pre-shared secrets, certificates, or raw public keys

Hardware acceleration in IoT devices

IETF is currently working on
◾ Authentication/authorization (ACE)
◾ DTLS profiles (DICE)

e.g.,

Status of CoAP

“Proposed Standard” since 15 Jul 2013

RFC 7252

Next working group documents in the queue

◾ Observing Resources
◾ Group Communication
◾ Blockwise Transfers

◾ Resource Directory
◾ HTTP Mapping Guidelines

Status of CoAP

In use by

◾ OMA Lightweight M2M
◾ IPSO Alliance
◾ ETSI M2M / OneM2M

◾ Device management for network operators
◾ Lighting systems for smart cities
◾ Innovative products, e.g., Spark.io

https://www.spark.io/

Building RESTful IoT Applications

What is REST?

Representational State Transfer
is the architectural style that
powers the World Wide Web

(i.e., a set of constraints applied to
the elements within the architecture)

Elements

Origin
Server

User
Agent

Origin
Server

Non-Web
Origin
Server

Resource

User
Agent

Browser

IoT Mashup
Engine

Forward
Proxy

Reverse
Proxy

Inter-
mediary

Gateway

Web server

Bluetooth
device

Components

Data

Connectors

Inter-
mediary

Inter-
mediary Re

p
re

se
n-

ta
ti
on

Re
p
re

se
n-

ta
ti
on

(Metadata)

Client-Server Constraint

How to connect the components?

Separation of concerns

◾ Origin servers provide the data
through a server connector

◾ User-Agents provide the
user/application interface and initiate
interaction through a client connector

⇒ components can evolve independently

Stateless Constraint

How to do request-response?

REST is all about state in a distributed system!

Requests are constrained by “Stateless”

Each request must contain all the information
to understand the request so that servers can
process it without context (the state of the client)

⇒ visibility, reliability, and scalability

Bad cookies!

Servers store data that is
independent from the
individual client states

(resource state)

Origin Server

Resource

Resource

Resource

Transitions
fire requests

User Agent
User Agent

Only the clients keep
application state

(session/client state)

Application as Finite State Machine

Cache Constraint

Responses to requests must have implicit
or explicit cache-control metadata

Clients and intermediaries can store
responses and re-use them to locally
answer future requests

⇒ efficiency, scalability, and
user-perceived performance

Uniform Interface Constraint

All RESTful Web services use the same interfaces
that are defined by

◾ URIs to identify resources
◾ Representations to manipulate resources

◽ State transfer
◽ No RPC-like service calls

◾ Self-descriptive messages (also see Stateless)
◽ Well-defined media types
◽ Standard set of methods
◽ Independent from transport protocol

◾ HATEOAS...

define semantics

Application as finite-state
machine (FSM) at the client

Hypermedia As The Engine
Of Application State

◾ Clients start from an entry URI
or a bookmark

◾ Response to the GET request has
a hypermedia representation

◾ It contains Web links that define
the transitions of the FSM

◾ Client chooses link to follow and
issues the next requests
(i.e., triggers a transition)

◾ URIs and possible transitions are
never hardcoded into the client:
the client “learns” the application
on the fly through the media
type and link relations

◾ However, it can also go back

⇒ loose coupling to evolve
independently

User Agent

Entry URI / bookmark

Hypermedia

Media types define
◾ the representation format as well as
◾ the processing model
for the data model of a Web resource

HTML is easy: humans can reason!

What about machine-to-machine?

Internet Media Types (formerly known as MIME)

application/xml or application/json or text/plain

(reusable, meaningless)

application/senml+json

(reusable, standardized)

application/prs.my-actuator-control

(personal, meaningful)

In general

Reuse media types as far as possible
(http://www.iana.org/assignments/media-types/media-types.xhtml)

Standardize your own if nothing fits

internally or globally (RCF 6838)

http://www.iana.org/assignments/media-types/media-types.xhtml
http://tools.ietf.org/html/rfc6838

Layered System Constraint

Intermediaries can be placed at various
points to modify the system
◾ Caching proxies
◾ Load balancers
◾ Firewalls
◾ Gateways to connect legacy systems

Fully transparent, as one layer cannot see
beyond the next layer

⇒ adaptability, scalability, security

Optional, easy to understand, and
a constraint that does not constrain,
but important for the Web as we know it

Allows to update client features
after deployment, e.g., JavaScript in the
browser to improve the user interface

⇒ improves system extensibility

(Code-On-Demand)

but reduces visibility

Summary

Elements of a RESTful architecture
◾ User agents (client connectors)
◾ Origin servers (server connectors)
◾ Intermediaries (client and server at once)
◾ Data (resources, representations, metadata)

REST Constraints
◾ Client-Server
◾ Stateless
◾ Cache
◾ Uniform Interface (HATEOAS!)
◾ Layered System
◾ (Code-On-Demand)

How to Become RESTful
for object- and service-oriented people

Richardson Maturity Model
http://martinfowler.com/articles/richardsonMaturityModel.html

http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html

Level 0: The Swamp of POX

(POX = plain old XML)

Happens when HTTP is just used as
transport protocol or tunnel because

“port 80/443 is safe and always open”

The Web service only has a single URI
and clients post RPCs that trigger an
action (e.g., WS-* and JSON-RPC)

Level 1: Resources

Expose each service entity as
Web resource with individual URI
for global addressability

But Level 1 still uses RPCs

◾ POST /sensors/temperature?method=read

◾ POST /sensors/temperature?method=configure
{"a":3,"b":4}

Level 2: HTTPCoAP Verbs :)

...and of course representations
to manipulate resources

GET safe and idempotent

POST not safe and not idempotent

PUT not safe but idempotent

DELETE not safe but idempotent

safe: no side-effects on the resource

idempotent: multiple invocations have the

same effectas a single invocation

Level 2: HTTPCoAP Verbs :)

Verbs map to CRUD operations:
POST Create a new (sub-)resource

request body can have initial state

response body can be an action result
Location-* options can contain link to new resource

GET Read the resource state

no request body

response body has representation

PUT Update the resource state

request body has updated representation

response can have only code or action result in body

DELETE Delete the resource

no request body

response can have only code or action result in body

Level 2: Still not REST (but helpful)

Level 2 API specifications usually look like this:
◾ /config/profile

◽ GET
⚬ Request: no parameters
⚬ Response: application/json

Property Type Description
id int identifier of the profile
name string name of the profile
...

◽ PUT
⚬ Request: application/json

…
◾ /actuators/pump

Main problem: tight coupling
(hard-coded URIs, non-reusable message descriptions)

often called “RESTful”

Level 3: Hypermedia Controls

HATEOAS
◾ Define media types for the application
◾ Embed links to drive application state
◾ Provide initial URI

“A REST API should spend almost all of its descriptive
effort in defining the media type(s) used for
representing resources and driving application
state, or in defining extended relation names and/or
hypertext-enabled mark-up for existing standard
media types.”http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Level 3 IoT Applications?

Sensors and actuators are rather easy to model

◾ Resources that provide sensor data
◾ Resources that provide and accept parameters

All CoAP nodes provide an initial URI

/.well-known/core

First reusable media types for IoT applications

◾ application/link-format (RFC 6690)

◾ application/senml (draft-jennings-senml)

◾ application/coap-group+json (draft-ietf-core-groupcomm)

http://tools.ietf.org/html/rfc6690
http://tools.ietf.org/html/draft-jennings-senml
http://tools.ietf.org/html/draft-ietf-core-groupcomm

Level 3 IoT Applications?

The CoRE Link Format provides attributes for links

◾ Can be more detailed than relation names
◾ Give meaning to generic media types
◾ Single values/parameters can be in text/plain

We are just at the beginning!

⇒ Bottom-up semantics for M2M

Bad because of “typed resources”?

Other REST Mechanisms

Exception Handling with response codes
◾ 4.xx Client errors
◾ 5.xx Server errors
Content negotiation
◾ Accept option
Conditional requests for concurrency
◾ ETag
◾ If-Match
◾ If-None-Match

CoAP and REST

Questions?

CoAP live with Copper!

CoAP protocol handler for Mozilla Firefox

Browsing and
bookmarking
of CoAP URIs

Interaction with
Web resources like
RESTClient or Poster

Treat IoT devices like
RESTful Web services

CoAP live with Copper!

Available sandboxes

coap://iot.eclipse.org/

coap://vs0.inf.ethz.ch/

coap://coap.me/

Erbium (Er) REST Engine

Contiki OS CoAP implementation
◾ written in C
◾ focus on small footprint but also usability

For
◾ Thin Server Architecture

(thus, minimal client support)
◾ RESTful wrapper for sensor/actuator hardware

Two Layers (Contiki apps)

rest-engine
◾ Web resource definitions
◾ RESTful handling of requests
◾ users implement resource handlers
er-coap
◾ CoAP implementation
◾ maps REST functions to protocol
◾ hides protocol-specific operations

Code Structure

Keep it modular
◾ er-coap / er-coap-constants

protocol format & parsing
◾ er-coap-engine

control flow (client/server)
◾ er-coap-transactions

retransmissions
◾ er-coap-separate
◾ er-coap-observe
◾ er-coap-block
◾ er-coap-res-well-known…
◾ er-coap-conf

tweak for application needs

coap_engine (er-coap-engine.c)

receive messages
handle retransmissions

activate /.well-known/core
open socket

process (e.g., er-example-server.c)

start engines
activate resources

handle user events

rest_engine_process (rest-engine.c)

call periodic handlers

set periodic timers

Resource Handler API

Create a C module for each resource
◾ choose resource type (see next slide)
◾ set CoRE Link Format information
◾ implement resource handlers

◽ GET
◽ POST
◽ PUT
◽ DELETE

or set to NULL for 4.05 Method Not Allowed

◾ activate resources in main process

Five Resource Macros

◾ RESOURCE
simple CoAP resource

◾ PARENT_RESOURCE
manages virtual sub-resources (e.g., for URI-Templates)

◾ SEPARATE_RESOURCE
long-lasting handler tasks ⇒ separate responses

◾ EVENT_RESOURCE
observable resource that is manually triggered

◾ PERIODIC_RESOURCE
observable resource that is triggered by timer

Minimal Client API

One call to issue requests

COAP_BLOCKING_REQUEST()

Call blocks until response is received
◾ linear program code for interactions
◾ also handles blockwise transfers

Working on COAP_ASYNC_REQUEST()
◾ support for observe and separate response
◾ some projects already have custom solutions

Californium (Cf) CoAP framework

Unconstrained CoAP implementation
◾ written in Java
◾ focus on scalability and usability

For
◾ IoT cloud services
◾ Stronger IoT devices

(Java SE Embedded or special JVMs)

Stages

◾ Decoupled with
message queues

◾ independent
concurrency models

◾ Adjusted statically for
platform/application

◾ Stage 1 depends on
OS and transport

◾ Stage 2 usually
one thread per core

3-stage Architecture

E
xc

ha
ng

e
S

to
re

Blockwise Layer
Observe Layer
Token Layer

Reliability Layer

Matching & Deduplication
Message Serialization

Transport (socket I/O)

S
ta

ge
 1

S
ta

ge
 2

: P
ro

to
co

l (
C

oA
P

)
S

ta
ge

 3
: L

og
ic

Network

A1

A2

B2

B1

A

B

Root

Web resources

◾ Optional thread pool
for each Web resource

◾ Inherited by parent
or transitive ancestor

◾ Protocol threads used
if none defined

Stage 3: Server Role

E
xc

ha
ng

e
S

to
re

Blockwise Layer
Observe Layer
Token Layer

Reliability Layer

Matching & Deduplication
Message Serialization

Transport (socket I/O)

S
ta

ge
 1

S
ta

ge
 2

: P
ro

to
co

l (
C

oA
P

)
S

ta
ge

 3
: L

og
ic

Network

A1

A2

B2

B1

A

B

Root

Clients with

response handlers

◾ Object API called from
main or user thread

◾ Synchronous:
Protocol threads
unblock API calls

◾ Asynchronous:
Optional thread pools
for response handling
(e.g., when observing)

Stage 3: Client Role

E
xc

ha
ng

e
S

to
re

Blockwise Layer
Observe Layer
Token Layer

Reliability Layer

Matching & Deduplication
Message Serialization

Transport (socket I/O)

S
ta

ge
 1

S
ta

ge
 2

: P
ro

to
co

l (
C

oA
P

)
S

ta
ge

 3
: L

og
ic

Network

Client for B

Client for A

Async. Client

m
ai

n

Encapsulate stages 1+2

Enable

◾ multiple channels
◾ stack variations for

different transports

Individual concurrency
models, e.g., for DTLS

Endpoints

Stack

UDP

S
ta

ge
 1

S
ta

ge
 2

: P
ro

to
co

l (
C

oA
P

)
S

ta
ge

 3
: L

og
ic A1

A2

B2

B1

A

B

Root

Stack

DTLS

Stack

...

Implemented in
CoapEndpoint

Separation of
bookkeeping
and processing

Exchanges
carry state

Endpoints

CoapEndpoint

MessageInterceptorMessageInterceptor

Matcher

MessageInterceptor

Deduplicator

Message
Exchange

Message

Message

Message

Message

Message
Exchange

Message
Exchange

Message
Exchange

Message
Exchange

CoapStack

Connector

Outbox
(Impl)

Data
Serializer

Inbox
Impl

(RawDataChannel
from

element-connector)

Data
Parser

DataData

StackTopAdapter MessageDeliverer
Blockwise Layer
Observe Layer
Token Layer

Reliability Layer

mjCoAP

mjCoAP

Java-based CoAP implementation

Focuses on fast and easy development of
CoAP-based applications

Lightweight (small footprint) and
compatible with Java-enabled devices
◾ Java SE
◾ Embedded Java/Java ME

mjCoAP

mjCoAP provides a simple set of APIs for
creating server-side and client-side
applications
Design principles:
◾ asynchronous (callback)
◾ lightness
◾ easy-to-use/fast-development
◾ re-usability (can be used to implement other

protocols that share the message same syntax -
e.g. CoSIP1)

[1] S. Cirani, M. Picone and L. Veltri ,"A session initiation protocol for the
Internet of Things", Scalable Computing: Practice and Experience, Volume 14,
Number 4, pp. 249–263, DOI 10.12694/scpe.v14i4.931, ISSN 1895-1767

Paper on mjCoAP

[2] S. Cirani, M. Picone, and L. Veltri, “mjCoAP: An
Open-Source Lightweight Java CoAP Library for
Internet of Things applications”, Workshop on
Interoperability and Open-Source Solutions for the
Internet of Things, in conjunction with SoftCOM
2014, September 2014

Layered Architecture

mjCoAP is formed by 3 sub-layers

Messagging layer

◾ Responsible for sending and receiving
CoAP messages over UDP

◾ At this layer, all messages are handled
without inspection (requests and
responses, CON/NON/ACK/RST)

◾ Main classes:
◽ CoapProvider (send messages)

◽ CoapProviderListener (receive messages with
onReceivedMessage() callback)

Reliable Transmission layer

◾ Responsible for reliable transmission of
CON CoAP messages (both requests
and responses)

◾ This layer takes care of:
◽ Retransmitting messages that are not ACKed
◽ Notifying failure (timeout) and success (ACK)

◾ Support for piggybacked and separate
responses

Reliable Transmission layer

◾ Main classes:
◽ CoapReliableTransmission
◽ CoapReliableTransmissionListener
◽ CoapReliableReception

Transaction layer

◾ Request/response exchange

◾ Reliable transmissions are handled by
the underlying layer

◾ At the client-side, send a request and
receive the corresponding response

◾ At the server-side, receive a request
and send the response

Transaction layer

◾ Main classes:
CoapTransactionClient
CoapTransactionClientListener
CoapTransactionServer
CoapTransactionServerListener

Follow the Slides

http://goo.gl/anfy5w

http://goo.gl/anfy5w
http://goo.gl/anfy5w

Let’s get concrete!

Californium (Cf)

Five repositories on GitHub
◾ https://github.com/eclipse/californium

Core library and example projects

◾ https://github.com/eclipse/californium.element-connector
Abstraction for modular network stage (Connectors)

◾ https://github.com/eclipse/californium.scandium
DTLS 1.2 implementation for network stage (DtlsConnector)

◾ https://github.com/eclipse/californium.tools
Stand-alone CoAP tools such as console client or RD

◾ https://github.com/eclipse/californium.actinium
App server for server-side JavaScript*

*not yet ported to new implementation and using deprecated CoAP draft version

https://github.com/eclipse/californium
https://github.com/eclipse/californium
https://github.com/eclipse/californium.element-connector
https://github.com/eclipse/californium.element-connector
https://github.com/eclipse/californium.scandium
https://github.com/eclipse/californium.scandium
https://github.com/eclipse/californium.tools
https://github.com/eclipse/californium.tools
https://github.com/eclipse/californium.actinium
https://github.com/eclipse/californium.actinium

Code structure

https://github.com/eclipse/californium
◾ Libraries (“californium-” prefix)

◽ californium-core CoAP, client, server
◽ californium-osgi OSGi wrapper

◽ californium-proxy HTTP cross-proxy

◾ Example code
◾ Example projects (“cf-” prefix)

https://github.com/eclipse/californium
https://github.com/eclipse/californium

Code structure

https://github.com/eclipse/californium
◾ Libraries
◾ Example code

◽ cf-api-demo API call snippets

◾ Example projects

https://github.com/eclipse/californium
https://github.com/eclipse/californium

Code structure

https://github.com/eclipse/californium
◾ Libraries
◾ Example code
◾ Example projects

◽ cf-helloworld-client basic GET client
◽ cf-helloworld-server basic server
◽ cf-plugtest-checker tests Plugtest servers
◽ cf-plugtest-client tests client functionality
◽ cf-plugtest-server tests server functionality
◽ cf-benchmark performance tests
◽ cf-secure imports Scandium (DTLS)
◽ cf-proxy imports californium-proxy

https://github.com/eclipse/californium
https://github.com/eclipse/californium

Maven

Maven handles dependencies and more

Call

mvn clean install

in this order (internal dependencies)
◾ californium.element-connector
◾ californium.scandium
◾ californium
◾ *

to build and install the artifacts

Server API

Important classes (see org.eclipse.californium.core)

◾ CoapServer
◾ CoapResource
◾ CoapExchange

Learn about other classes through auto-complete

Basic steps
◾ Implement custom resources

by extending CoapResource
◾ Add resources to server
◾ Start server

Server API - resources

import static org.eclipse.californium.core.coap.CoAP.ResponseCode.*; // shortcuts

public class MyResource extends CoapResource {

@Override

public void handleGET(CoapExchange exchange) {

exchange.respond("hello world"); // reply with 2.05 payload (text/plain)

}

@Override

public void handlePOST(CoapExchange exchange) {

exchange.accept(); // make it a separate response

if (exchange.getRequestOptions()....) {

// do something specific to the request options

}

exchange.respond(CREATED); // reply with response code only (shortcut)

}

}

Server API - Creation

public static void main(String[] args) {

CoapServer server = new CoapServer();

server.add(new MyResource("hello"));

server.start(); // does all the magic

}

Client API

Important classes
◾ CoapClient
◾ CoapHandler
◾ CoapResponse
◾ CoapObserveRelation

◾ Instantiate CoapClient with target URI
◾ Use offered methods get(), put(), post(), delete(),

observe(), validate(), discover(), or ping()
◾ Optionally define CoapHandler for

asynchronous requests and observe

Client API - Synchronous

public static void main(String[] args) {

CoapClient client1 = new CoapClient("coap://iot.eclipse.org:5683/multi-format");

String text = client1.get().getResponseText(); // blocking call

String xml = client1.get(APPLICATION_XML).getResponseText();

CoapClient client2 = new CoapClient("coap://iot.eclipse.org:5683/test");

CoapResponse resp = client2.put("payload", TEXT_PLAIN); // for response details

System.out.println(resp.isSuccess());

System.out.println(resp.getOptions());

client2.useNONs(); // use autocomplete to see more methods

client2.delete();

client2.useCONs().useEarlyNegotiation(32).get(); // it is a fluent API

}

Client API - Asynchronous

public static void main(String[] args) {

CoapClient client = new CoapClient("coap://iot.eclipse.org:5683/separate");

client.get(new CoapHandler() { // e.g., anonymous inner class

@Override public void onLoad(CoapResponse response) { // also error resp.

System.out.println(response.getResponseText());

}

@Override public void onError() { // I/O errors and timeouts

System.err.println("Failed");

}

});

}

Client API - Observe

public static void main(String[] args) {

CoapClient client = new CoapClient("coap://iot.eclipse.org:5683/obs");

CoapObserveRelation relation = client.observe(new CoapHandler() {

@Override public void onLoad(CoapResponse response) {

System.out.println(response.getResponseText());

}

@Override public void onError() {

System.err.println("Failed");

}

});

relation.proactiveCancel();

}

Advanced API

Get access to internal objects with

advanced() on
CoapClient, CoapResponse, CoapExchange

Use clients in resource handlers with

createClient(uri);

Define your own concurrency models with

ConcurrentCoapResource and

CoapClient.useExecutor() / setExecutor(exe)

Erbium (Er)

Erbium is part of Contiki OS
https://github.com/contiki-os/contiki

You already have it :)
◾ Libraries (in ./apps/)

◽ er-coap CoAP
◽ rest-engine resources, REST calls

◾ Examples (in ./examples/er-rest-example)
◽ er-example-server how to add resources
◽ er-example-client how to issue requests
◽ er-plugtest-server ETSI Plugtest test cases
◽ ./resources/res-* resource modules

https://github.com/contiki-os/contiki
https://github.com/contiki-os/contiki

Erbium (Er) Project Files

Makefile
ensure proper IPv6 configuration

add libraries
APPS += er-coap
APPS += rest-engine

project-conf.h
/* if needed, tweak parameters found in

 apps/er-coap/er-coap-conf.h */

Erbium (Er) Server Program

Global
extern resource_t <resources>;

In PROCESS
rest_init_engine();

rest_activate_resource(&<resource>, <URI-Path>);

SENSORS_ACTIVATE(<sensor>); /* if used by resource */

In PROCESS while(1) loop
PROCESS_WAIT_EVENT();

if (ev==<notification event>) <event resource>.trigger();

if (ev==<response ready>) <separate resource>.resume();

Erbium (Er) Resources I

#include "rest-engine.h"

static void res_get_handler(void *request, void *response,

uint8_t *buffer, uint16_t preferred_size, int32_t *offset);

RESOURCE(res_<name>,

"title=\"<human readable>";ct=0", /* see CoRE Link Format */

res_get_handler,

NULL, /* or res_post_handler */

NULL, /* or res_put_handler */

NULL /* or res_delete_handler */

);

Erbium (Er) Resources II

static void res_get_handler(void *request, void *response,

uint8_t *buffer, uint16_t preferred_size, int32_t *offset)

{

/* use REST.get_* functions to access request */

/* use REST.set_* functions to access response */

/* use buffer to create response body */

/* do not exceed preferred_size */

/* engine handles block transfers up to REST_MAX_CHUNK_SIZE */

/* use offset to fragment manually if larger */

}

Erbium (Er) Client Program I

Global or static in PROCESS
uip_ipaddr_t server_ip;

coap_packet_t request[1];

In PROCESS
coap_init_engine(); /* not rest_ because CoAP-only */

coap_init_message(request, COAP_TYPE_CON, <coap_method_t>, 0);

coap_set_header_uri_path(request, <URI-Path>);

/* if COAP_POST or COAP_PUT only */

coap_set_payload(request, <string>, <length>);

coap_set_header_content_format(request, <coap_content_format_t>);

COAP_BLOCKING_REQUEST(&server_ip, <port>, request,

client_response_handler);

Erbium (Er) Client Program II

Global: response handler function

void client_response_handler(void *response)

{

/* use coap_get_* functions */

/* OR */

coap_packet_t *const coap_res = (coap_packet_t *)response;

/* client is CoAP-only, no need for indirection */

/* use coap_res-> to access fields */

}

mjCoAP

CoapProvider

◾ It is the fondumental class that enables
CoAP messaging in an application

◾ A CoapProvider is bound to a specific
UDP port

◾ Provides a send() method

◾ Forwards incoming messages to
registered CoapProviderListeners

CoapProvider API
import org.zoolu.coap.core.*;

import org.zoolu.coap.message.*;

public class CoapClient implements CoapProviderListener{

private CoapProvider coapProvider;

public CoapClient(){

this.coapProvider = new CoapProvider(CoapProvider.ANY_PORT); // get random port

this.coapProvider.setListener(CoapMethodId.ANY, this); // receive all messages

}

public void send(CoapMessage message) {

this.coapProvider.send(message);

System.out.println(“SENT: ” + message);

}

@Override

public void onReceivedMessage(CoapMessage message) {

System.out.println(“RECV: ” + message);

}

}

CoapProvider API
public static void main(String[] args) {

CoapClient client = new CoapClient();

CoapRequest request =

CoapMessageFactory.createCONrequest(

CoapMethod.GET,

"coap://localhost/test");

client.send(request);

}

CoapTransactionClient API
import java.net.*;

import org.zoolu.coap.core.*;

import org.zoolu.coap.message.*;

import org.zoolu.net.*;

public class CoapTransactionClient {

private CoapProvider coapProvider;

public CoapTransactionClient(){

this.coapProvider = new CoapProvider(CoapProvider.ANY_PORT);

}

public void request(CoapMethod method, String resource, byte[] payload, CoapTransactionClientListener
listener) {

URI uri = new URI(resource);

CoapRequest req = CoapMessageFactory.createCONrequest(method,uri);

req.setPayload(payload);

new CoapTransactionClient(coapProvider, new SocketAddress(uri.getHost(),uri.getPort()),

listener).request(req);

}

}

CoapTransactionClient API
public static void main(String[] args) {

CoapTransactionClient client = new CoapTransactionClient();

client.request(CoapMethod.GET,"coap://localhost/test",null,

new CoapTransactionClientListener({

@Override

public void onTransactionResponse(CoapTransactionClient tc, CoapMessage resp)

System.out.println(“RECV: ” + resp);

}

@Override

public void onTransactionFailure(CoapTransactionClient tc)

System.out.println(“FAILED”);

}

});

);

}

APIs

Questions?

HANDS-ON!

