

Securebox and IoT Research at TUM Connected Mobility

Dr. Aaron Yi DING

Technical University of Munich

Germany

Outline

- IoT Research at TUM Connected Mobility
- Securebox Safeguard Network Edge
- Summary

TUM Connected Mobility

- BMW-endowed Chair of Connected Mobility
 - Led by Prof. Jörg Ott

Topics

- Mobile opportunistic networking
- Network architecture
- Mobility and user activity modeling
- Internet of Things
- Internet measurements and analysis

IoT Research at TUM CM

IoT Testbed

- Google IoT Research Pilot Award
- 50 x Bluetooth Beacons distributed over the campus
- Boards: Intel Edison and Raspberry Pi
- Sensors:
 - Temperature, Humidity
 - PIR Motion Sensor
 - Sound Sensor
 - Light Sensor
 - Camera
 - Status LEDs
- Decentralized proximity detection

Outline

IoT Research at TUM Connected Mobility

- Securebox Safeguard Network Edge
- Summary

ТШ

Securebox

- Toward safer IoT networks
 - The growing pain of exponential increse

Spin-Off of SoftOffload

- Alarming spot in IoT industry security
- Platform dedicated for budget and resource restrained IoT networks
- "Charge for Network Service" model

Internet of (too many) Things

Challenges

Internet of Things / Dreams?

Device limit, budget constraint, dev deadline, scale factor, lack of expertise,

Challenge

- Internet of T
 - Device limit, bu expertise,

ТШП

actor, lack of

Insecure IoT Network Private User Data

Vulnerabilities

Device	Vulnerability	Device No.
Avtech Camera	exposed account / passwd	130k
TV Set-top box	exposed access	61k
Smart Refrigerator	exposed access	146
CCTV Camera	Unprotected RSA key pairs	30k (by IP)
Traffic Light	No credentials	219
Belkin Wemo	DDoS, exposed access	>500k

[1] Handling a trillion (unfixable) flaws on a billion devices (HotNets 2015)[2] SHODAN. https://www.shodan.io/

Aaron Yi DING | Chair of Connected Mobility | TUM

Existing problems

Admin / Admin

- Low budget device
 - Hard coded default passwd (lack of UI to change it !)
 - Exposed IP:Port access
 - Unprotected RSA key pair in the firmware image
- Unawareness and Incapability
 - Potential threat to network infrastructure
 - Privacy of individuals

Existing problems

Admin / Admin

- Low budget device
 - Hard coded default passwd (lack of UI to change it !)
 - Exposed IP:Port access
 - Unprotected RSA key pair
- Unawareness and Ind
 - Potential threat to network
 - Privacy of individuals

Main issues

- User-side limitation
 - Budget, expertise, lack of interface
- Scale and diversity of IoT devices
- Physical impact
- Cross-device dependency (system mechanism to discover, update and express it) *
- Longevity of IoT devices
 - Out of support circles

Why "old" tricks do not work

- Hardware-centric / host-centric
 - price, complexity, device limitation, update circles
- Lack of cross device/network policy enforcement
- Dynamic physical and computational context
- Crowd-source vs. cloud *

Going to the Cloud ?? Or ...

Securebox

- Cloud-assisted security service
- Affordable, incremental deployment
- "Charge for Network Service" model
- Ibbad Hafeez
- Lauri Suomalainen
- Sasu Tarkoma
- Alexey Kirichenko

Securebox

- Frontend
 - Floodlight
 - OVS

Securebox

Performance

Aaron Yi DING | Chair of Connected Mobility | TUM

7

ТЛП

Latency concern

Related Work

Research papers

Remote deployment of middleboxes

- J. Sherry, et al., (SIGCOMM 2012); C. Lan, et al., (NSDI 2016); SENSS (SIGCOMM 2014)
- Middlebox as a service
 - Blindbox (SIGCOMM 2015); DPI as a service (CoNEXT 2014)

Improving home networks

 N. Feamster (HomeNets 2010); T. Yu (HotNets 2015), T. Zachariah (HotMobile 2015), uCap (CHI 2015), SpaceHub (HotNets 2015), Contextual Router (SOSR 2016)

IoT Security

K. Zhang, et al., (Wireless Comm. 2015); FlowFence (USENIX Security, 2016)

Related Products

Bitdefender Box \$399 http://www.bitdefender.com/box/

F-Secure Sense \$199 (inc. 12 month membership) https://sense.f-secure.com/

Google onHub \$199 https://on.google.com/hub/

Dojo \$99 https://www.dojo-labs.com/product/dojo/#

ПΠ

Summary

IoT Security needs a new service model

Lessons

- Programmable design does help
- Extensible and open deployability
- Deal with the cloud, utilize the edge

On-going work

- Backend system and features
- F-Secure Sense integration