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Status

• News

• draft-ietf-6tisch-minimal-security-04

• Published on Oct 30th 2017

• Relies completely on PSKs

• Summary of updates in -04
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Update #1: Key/Nonce Derivation

• OSCORE-06 (formerly known as OSCOAP) updated the key/nonce 
derivation process

• Same nonce used for both request and response but under a different key

• We could no longer use “EUI-64 | 0x00” and “EUI-64 | 0x01” as 
identifiers for the pledge and the JRC

• We now use EUI-64 of the pledge as Master Salt during key derivation 
and transport it as Context Hint

• Sender ID of each pledge is 0x00; ID of the JRC is 0x01
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Derivation of Key Used to Protect Join Request
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Derivation of Key Used to Protect Join Response
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Nonce Derivation
(used both for Join Request and 
Response)
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Update #2: Error Handling

• Error handling in -03 opens the pledge to a DoS attack
• Attacker could send (unprotected) error messages and force the pledge to 

attempt joining the next advertised network

• Solution in -04:
• Using Non-Confirmable CoAP msg for Join Request will make OSCORE at JRC 

silently drop the request in case of failure (decryption, replay, unauthorized)

• The pledge MUST silently discard any response not protected with OSCORE, 
including error codes.

• Forces the pledge to implement a retransmission mechanism at the APP layer 
duplicating CoAP Confirmable msg functionality
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Update #3: Join Request 
Retransmissions
• Binary exponential back-off mechanism to be implemented by the 

pledge at the APP layer specified in -04:
• Super simple, inspired by the one in RFC7252 (CoAP)

• Pledge keeps track of timeout and retransmission_counter

• Parameters: TIMEOUT, TIMEOUT_RANDOM_FACTOR, MAX_RETRANSMIT

• If the retransmission counter reaches MAX_RETRANSMIT on a timeout, the 
pledge SHOULD attempt to join the next advertised 6TiSCH network.
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1st attempt:    timeout in [10s, 15s] 
2nd attempt:   timeout in [20s, 30s]
3rd attempt:    timeout in [40s, 60s]
4th attempt:    timeout in [80s, 120s]
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Misc updates

• Recommendation to store untrusted neighbor entries in a separate 
cache

• Join Request switched from GET -> POST to be more flexible with 
payload

• Added requirement on persistency of mutable OSCORE context 
parameters

• Prevents nonce reuse and replay attacks across reboots

• Extensive editorial pass
• Rewrote intro, clarifications on the PSK, etc…
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Conclusion

• minimal-security-04 relies completely on PSKs

• Tracking of OSCORE, updates to error handling, editorial

• Open issue:
• Join traffic, potentially controlled by the attacker, can influence SF to trigger 

6P commands

• In minimal-security, we recommend bandwidth cap at Join Proxy but this does 
not completely solve the problem

• Should each SF specify how it handles the join traffic? How does one 
differentiate frames containing Join Requests from other network traffic?

• Reviews welcome!
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