
6TiSCH interim 3 November 2017

draft-ietf-6tisch-minimal-
security

Mališa Vučinić, University of Montenegro
Jonathan Simon, Analog Devices

Kris Pister, UC Berkeley
Michael Richardson, Sandelman Software Works

1

6TiSCH interim 3 November 2017

Status

• News

• draft-ietf-6tisch-minimal-security-04

• Published on Oct 30th 2017

• Relies completely on PSKs

• Summary of updates in -04

2

6TiSCH interim 3 November 2017

Update #1: Key/Nonce Derivation

• OSCORE-06 (formerly known as OSCOAP) updated the key/nonce
derivation process

• Same nonce used for both request and response but under a different key

• We could no longer use “EUI-64 | 0x00” and “EUI-64 | 0x01” as
identifiers for the pledge and the JRC

• We now use EUI-64 of the pledge as Master Salt during key derivation
and transport it as Context Hint

• Sender ID of each pledge is 0x00; ID of the JRC is 0x01

3

6TiSCH interim 3 November 2017

Derivation of Key Used to Protect Join Request

4

PSKPSK

Master
Salt

=
Pledge’s
EUI-64

Master
Salt

=
Pledge’s
EUI-64

String
“Key”
String
“Key”

Algorithm
ID and

key len.

Algorithm
ID and

key len.

Sender ID
=

0x00

Sender ID
=

0x00

HKDFHKDF

“Join Request”
Key

“Join Request”
Key

6TiSCH interim 3 November 2017

Derivation of Key Used to Protect Join Response

5

PSKPSK

Master
Salt

=
Pledge’s
EUI-64

Master
Salt

=
Pledge’s
EUI-64

String
“Key”
String
“Key”

Algorithm
ID and

key len.

Algorithm
ID and

key len.

Sender ID
=

0x01

Sender ID
=

0x01

HKDFHKDF

“Join Response”
Key

“Join Response”
Key

6TiSCH interim 3 November 2017

Nonce Derivation
(used both for Join Request and
Response)

Common IVCommon IV

⊕

 Padded Seq
Number

 Padded Seq
Number

NonceNonce

PSKPSK

Master
Salt

=
Pledge’s
EUI-64

Master
Salt

=
Pledge’s
EUI-64

String
“IV”

String
“IV”

Algorithm
ID and IV

len.

Algorithm
ID and IV

len.

HKDFHKDF

Sender ID
= 0x00

Sender ID
= 0x00

ID size
= 1

ID size
= 1

6TiSCH interim 3 November 2017

Update #2: Error Handling

• Error handling in -03 opens the pledge to a DoS attack
• Attacker could send (unprotected) error messages and force the pledge to

attempt joining the next advertised network

• Solution in -04:
• Using Non-Confirmable CoAP msg for Join Request will make OSCORE at JRC

silently drop the request in case of failure (decryption, replay, unauthorized)

• The pledge MUST silently discard any response not protected with OSCORE,
including error codes.

• Forces the pledge to implement a retransmission mechanism at the APP layer
duplicating CoAP Confirmable msg functionality

7

6TiSCH interim 3 November 2017

Update #3: Join Request
Retransmissions
• Binary exponential back-off mechanism to be implemented by the

pledge at the APP layer specified in -04:
• Super simple, inspired by the one in RFC7252 (CoAP)

• Pledge keeps track of timeout and retransmission_counter

• Parameters: TIMEOUT, TIMEOUT_RANDOM_FACTOR, MAX_RETRANSMIT

• If the retransmission counter reaches MAX_RETRANSMIT on a timeout, the
pledge SHOULD attempt to join the next advertised 6TiSCH network.

8

1st attempt: timeout in [10s, 15s]
2nd attempt: timeout in [20s, 30s]
3rd attempt: timeout in [40s, 60s]
4th attempt: timeout in [80s, 120s]

6TiSCH interim 3 November 2017

Misc updates

• Recommendation to store untrusted neighbor entries in a separate
cache

• Join Request switched from GET -> POST to be more flexible with
payload

• Added requirement on persistency of mutable OSCORE context
parameters

• Prevents nonce reuse and replay attacks across reboots

• Extensive editorial pass
• Rewrote intro, clarifications on the PSK, etc…

9

6TiSCH interim 3 November 2017

Conclusion

• minimal-security-04 relies completely on PSKs

• Tracking of OSCORE, updates to error handling, editorial

• Open issue:
• Join traffic, potentially controlled by the attacker, can influence SF to trigger

6P commands

• In minimal-security, we recommend bandwidth cap at Join Proxy but this does
not completely solve the problem

• Should each SF specify how it handles the join traffic? How does one
differentiate frames containing Join Requests from other network traffic?

• Reviews welcome!

10

	Slide 1
	Status
	Update #1: Key/Nonce Derivation
	Derivation of Key Used to Protect Join Request
	Derivation of Key Used to Protect Join Response
	Nonce Derivation (used both for Join Request and Response)
	Update #2: Error Handling
	Update #3: Join Request Retransmissions
	Misc updates
	Conclusion

