
6TiSCH Minimal Scheduling Function
(MSF)

draft-chang-6tisch-msf-00
Tengfei Chang

Malisa Vucinic

Xavi Vilajosana

Oops…

• We missed the deadline (timezone confusion…), thanks to Suresh for
publishing the document at:

• https://tools.ietf.org/html/draft-chang-6tisch-msf-00

Abstract
 This specification defines the 6TiSCH Minimal Scheduling Function

 (MSF). This Scheduling Function describes both the behavior of a

 node when joining the network, and how the communication schedule is

 managed in a distributed fashion. MSF builds upon the 6top Protocol

 (6P) and the Minimal Security Framework for 6TiSCH.

In a nutshell

1. Start with a single cell
• 6tisch-minimal

2. Perform secure join
• 6tisch-minimal-security

3. Add/delete cells to parent
• 6tisch-6top-protocol

 Completely defined behavior, fully standardized story

Interaction with 6TiSCH-minimal
• Frames exchanged over the minimal cell:

1. EBs

2. DIOs

3. Join request/response messages between pledge and JP

4. the first 6P Transaction a node initiates

• Access rules to the minimal cell: cut bandwidth in portions:
• 1/(3(N+1)) for EBs (N= number of neighbors)

• 1/(3(N+1)) for DIOs

• Rest for join and 6P (see above)

• Slotframe organization:
• Slotframe 0 for minimal cell

• Slotframe 1 for cells added by MSF

Node Behavior at Boot (1/2)
• Start state

• PSK

• Any other configuration mentioned in minimal-security

• [7-step join]

• End state
• node is synchronized to the network

• node is using the link-layer keying material it learned through the secure joining process

• node has identified its preferred routing parent

• node has a single dedicated cell to its preferred routing parent

• node is periodically sending DIOs, potentially serving as a router for other nodes' traffic

• node is periodically sending EBs, potentially serving as a JP for new joining nodes

Node Behavior at Boot (2/2)
• Step 1 - Choosing Frequency

• Listen on random frequency

• Step 2 – Receiving Ebs
• Listen for multiple neighbors, shoes one as JP

• Step 3 - Join Request/Response
• First hop over minimal cells, rest over dedicated (same for response)

• Step 4 - Acquiring a RPL rank
• Select preferred parent

• Step 5 - 6P ADD to Preferred Parent
• Single TX|RX|SHARED cell to parent

• Step 6 - Send EBs and DIOs
• Accept children

• Step 7 - Neighbor Polling
• Keep-alive to each neighbor you have cells to every 10s; remove if dead.

did you spot the typo?

Dynamic Scheduling (1/4)

• 3 reasons for adding/removing/relocating cells:
• Adapting to Traffic

• Switching Parent

• Handling Schedule Collisions

• 6P carries out the work

Dynamic Scheduling (2/4)

• Reason 1/3: Adapting to Traffic
• A node always has at least one cell to preferred parent

• Keep counters to preferred parent:
• NumCellsPassed

• NumCellsUsed

• When NumCellsPassed reaches 16:
• If NumCellsUsed>12, add a cell

• If NumCellsUsed>4, remove a cell

Dynamic Scheduling (3/4)

• Reason 2/3: Switching parents
• Count number of cells to old parent

• Schedule the same number to new parent

• Remove cells from old parent

Dynamic Scheduling (4/4)

• Reason 3/3: Handling schedule collisions
• Counter for each cell to preferred parent:

• NumTx

• NumTxAck

• When NumTx==256:
• NumTx<<1

• NumTxAck<<1

• Periodically, compare numbers for all cells to parent
• If no roll over yet, abort

• If PDR of one cell <50% of cell with max PDR, relocate

Other “details”

• 6P SIGNAL command

• Rules for CellList

• 6P Timeout Value

• Rule for Ordering Cells

• Meaning of the Metadata Field

• 6P Error Handling

• Schedule Inconsistency Handling

6TiSCH MSF challenge!
• Answer the following questions through implementation:

• how long does it take a 100-node network to form? what topology?

• what is the average latency of a packet in a typical 32-node indoor deployment?

• how does the network handle bursty traffic? up to how much burstiness is acceptable (i.e. no packets lost)?

• What is the code/memory footprint of an MSF implementation?

• How resilient a network is to loss of nodes in the middle of its construction? While it's running?

• What kind of network topology is difficult to handle to such scheduling function? (Linear, Tree, Random, ...).

• What is the cost of adding a new node to the network once it's running? Does this cost increase with the size of the network?

• what is the data rate that makes cell allocation too slow? considering the 2-way nature of 6p.

• how often we get CLEARs due to inconsistency given certain network conditions (different levels of PDR)

• what is the impact of cell-list size in the allocation probability (5 candidate cells are recommended, what about more or less?)

• how do queues grow when a node is using its almost maximum capacity and starts requesting more cells.

• what is the impact of message timeouts in the size of queues?

• Etc. (ideas welcome!)

• 6TiSCH simulator and OpenWSN implementations ongoing!

	Slide 1
	Oops…
	Abstract
	In a nutshell
	Interaction with 6TiSCH-minimal
	Node Behavior at Boot (1/2)
	Node Behavior at Boot (2/2)
	Dynamic Scheduling (1/4)
	Dynamic Scheduling (2/4)
	Dynamic Scheduling (3/4)
	Dynamic Scheduling (4/4)
	Other “details”
	6TiSCH MSF challenge!

