
1

Flow-based	Cost	Query
draft-gao-alto-fcs-04

Kai	Gao1 J.	Jensen	Zhang2
Qiao Xiang3 Y.	Richard	Yang3

1 Tsinghua	University			2 Tongji University			3 Yale	University

Dec 18,	2017@IETF	100 Interim

Presenter: Jensen

2

Updates:	Overview
• Many	updates	from	-03 (July	03,	2017,	IETF	99)	to	-04
(Dec 13,	2017,	IETF	100 Interim)
– Move cost value extension away from	the	draft
– Clean	up	the	address	type	registry

•Distinguish	term	“	Protocol”	with	“AddressType”
•Add	the “Address	Type	Conflict	Registry”
•Remove	application-layer	protocol

– Add a new field “or-required” in FCS capabilities

3

Requirements on Flow-based Query
General Requirements on ALTO for the Unified Interface
(recall IETF99):
● More flexible input: Target of FCS
● More flexible output: Target of Path Vector, Unified

Property, Multi-Cost (RFC8189), Cost Calendar

Requirements on Query Input:
● #1 More flexible shape of query space
● #2 More expressive encoding of query entry

Basic Proposal of FCS:
● Arbitrary end-to-end query
● Expressive endpoint address
● Extensible flow description and arbitrary flow query

4

Flexible Shape of Query Space
• Different flexibilities	of the query space

Full Mesh
Src-Dst Pairs

Partial Mesh
Src-Dst Pairs

Extensible
Header Space

srcs

addr1
addr2

dsts

addr3
addr4
addr5

id

f1
f2
f3

header-fields
k1 k2 k3 …
v11 * v13
v21 v22 *
v31 v32 v33

srcs

addr1
addr2

dsts

addr3
addr4
addr5

Lower Flexibility Higher Flexibility

Better Compatibility Worse Compatibility
Smaller Request Size Larger Request Size

5

Flexible Shape of Query Space
• Full Mesh Src-Dst Pairs (Base ALTO Protocol)

– {"srcs": [addr1, addr2]
"dsts": [addr3, addr4, addr5]}

• PartialMesh Src-Dst Pairs	(Section	5	of	FCS)
– Advantage:

• The response can be compatiblewith the base ALTO protocol
• The size of request can be reduced by using multiple smaller full meshes

– Drawback: Non-endpoint attributes cannot be supported
– [{"srcs": [addr1],

"dsts": [addr3, addr4]},
{"srcs": [addr2],
"dsts": [addr3, addr5]}]

• ExtensibleHeader Space	(Section	6	of	FCS)
– Advantage: non-endpoint attributes can be supported
– Drawback: The response is incompatible; the size of request cannot be reduced
– {"f1": {"ipv4:destination": v11, "ethernet:vlan-id": v13},

"f2": {"ipv4:destination": v21, "ipv4:source": v22},
"f3": {"ipv4:destination": v31, "ipv4:source": v32,

"ethernet:vlan-id": v33}}

Question: Can we achieve
a unified querymodel?

6

Expressive Query Entry Encoding
• Expressive EndpointAddress

– “An	endpoint	is	an	application	or	host	that	is	capable	of	communicating	
(sending	and/or	receiving	messages)	on	a	network.” (RFC7285 Sec 2.1)

– Encode 5-tuples to endpoint addresses
– New AddressTypes for ALTO Address Type Registry

• Use address type identifier to expressprotocol semantics
• Different address types can use the same address encodingwith
different semantics (e.g. “tcp” and “udp”)

• Extensible Flow Description
– ALTO Header Field Registry

• Current registry is a subset ofOpenFlowmatch fields
• Follow the TLV dependencies defined in OpenFlow
• Allowto register new header fields

7

The Key Remaining Issue
• Validation requirement

– Client: I want to query the cost of flow A
– Server: the descriptor of flow A is invalid
– “If the ALTO server does not define a cost value from a source endpoint to a

particular destinationendpoint, it MAY be omitted from the response”
(RFC7285 Sec 11.5.1.6)

– General Problem from Client:Which flows are available from this server?

• Case1: EndpointConflict
– {"srcs": ["tcp:203.0.113.45:54321"]

"dsts": ["udp:8.8.8.8:8080"]}

• Case2: Invalid FlowDescriptor
– {"flow1": {"ipv4:source": "203.0.113.45",
 "tcp:source": 54321,
 "udp:destination": 8080}}

8

Endpoint Conflict
• Declare conflicts of each address type

– The conflicting identifier list of the future registered address types could be
longer and longer

– Some network with special technologies (e.g. NAT) may avoid some
conflicts

9

Invalid Flow Descriptor
• Different cases of invalid flow descriptor

– Missing required header fields
• Validation:Declare “required” header fields list in “capabilities”

– Conflictingheader fields/values
• Validation:Apply the TLV format validationdefined in OpenFlow

– Unsupported header fields
• Validation:Check “required”and “optional”header fields list

• Limitation of a single “required” list
– Server: Each flowMUST contain “ipv4 source and destination”OR “ipv6

source and destination”
– A single “required”header fields list cannot express such a validator
– Introduce “or-required”:

• {"or-required":
[["ipv4:source", "ipv4:destination"],
["ipv6:source": "ipv6:destination"]]}

10

• Move “Address Type Registry” and “Address
Type Conflict Registry” to a new draft?
– Consider other drafts (e.g. cellular addresses)

have the same requirement
• Request for reviews/comments
• WG item?

Next Steps

11

Backup	Slides

12

Architecture: ALTO Providing Unified
NorthBound/East-West Views

13

Big Picture: Unified Model-Views in SDN

ALTO Function: Network information space → View

Model-views mapping of different ALTO query services:

● Filtered Network Map Service:
1-dimensional group region → endpoint set

● Filtered Endpoint Property Service:
1-dimensional address region → property view

● Filtered Cost Map Service:
2-dimensional rectangular group region → cost view

● Endpoint Cost Service:
2-dimensional rectangular address region → cost view

14

Design Decisions
● #1 Query schema: addr-based vs. spec-based
● #2 Entry encoding: type:addr vs. header-field
● #3 Validation: error or inheritance

Current decisions:

• Co-existence:
– addr-based + extended type:addr for legacy media-

type
– spec-based + header-field for new media-type

• Return ERROR for all invalid queries

15

FCS Query Schema (specification-
based schema):

object {
FlowFilterMap flows;

} FlowCostRequest :
MultiCostRequestBase;

object-map {
FlowId -> FlowFilter;

} FlowFilterMap;

Trade-off between addr-based and spec-based

Extended Legacy Cost Query Schema
(address-based schema):

object {
[CostType cost-type;]
[CostType multi-cost-types<1..*>;]
[CostType testable-cost-types<1..*>;]
[JSONString constraints<0..*>;]
[JSONString or-
constraints<1..*><1..*>;]

} MultiCostRequestBase;

object {
[EndpointFilter endpoints;]
[EndpointFilter endpoint-flows<1..*>;]

} ReqEndpointCostMap :
MultiCostRequestBase;

16

Trade-off between type:addr and header-field

New Query Entry Descriptor:

object-map {
TypedHeaderField -> JSONValue;

} FlowFilter;

Valid query entry:
(We can define a query entry without any
information about the source point.)

{
"ipv4:dst": "192.168.1.3",
"tcp:dst": 22,
"eth:vlan-id": 20

}

Compatible Query Entry Descriptor:
AddressType:EndpointAddr

New ALTO Address Type Registry (Section 8.1 of
draft-gao-alto-fcs-03)

Valid query entries:

"eth:98-e0-d9-9c-df-81”
"http:www.example.com”
"ftp:198.51.100.34:5123”
"tcp:[2000::1:2345:6789:abcd]:8080"

Address type conflict:

{
"srcs": ["ftp:192.168.0.2:5123"],
"dsts": ["http:www.google.com"]

}

17

Remaining Issue: Fault Tolerance
Consider the following query:
"endpoint-flows": [

{
"srcs": ["ipv4:192.0.2.2"],
"dsts": ["ipv4:192.0.2.89",

"http:cdn1.example.com"]
}, ... (1)
{

"srcs": ["udp:203.0.113.45:54321"],
"dsts": ["http:cdn1.example.com"]

} ... (2)
]

Only filter (2) conflicts, but the ALTO server won’t
return the cost of (1).

The ALTO client has to re-send (1) in the revised
query.

Is it possible to return the response of
the valid part with the error message
for the invalid part?

Option 1: Augment error message
into the [endpiont]cost-map response.

Option 2: Automatic conflict
avoidance.

e.g. "udp" is a specific type of
"ipv4"/"ipv6", so the ALTO
server reduce the src endpoint
address to "ipv4:203.0.113.45"
and return the cost between it and
"http:cdn1.example.com".

