Feedback on ALTO lightning talk at PANRG – IETF100

“The IETF ALTO protocol and its extensions”

Helping end hosts and applications to have a topology-aware insight into end to end paths

Sabine Randriamasy

IETF ALTO interim meeting – December 18th 2017
PANRG research and objectives

• Goal of PANRG
 • extend path awareness from the control plane to the edge with mechanisms allowing:
 • Endpoint discovery of paths,
 • Explicit association of properties to paths by endpoints,
 • Explicit endpoint selection of paths.

• The identified underlying hard problems are mainly:
 • Conflict of interest between hosts and networks,
 • Path property exposition by the network to third parties considering
 • network confidentiality and information aggregation level,
 • diversity of timescale for configuration, discovery, selection and dissemination.

• The PANRG would like to leverage its work on existing IETF protocols and their potential extensions.
Lightning talk: ALTO extensions relevant to PANRG

- ALTO presented as helping to address following PANRG questions
 - How are path properties defined and represented?
 - How do endpoints get access to trustworthy path properties?
 - How can endpoints select paths to use for traffic in a way that can be trusted by the network?

- See https://datatracker.ietf.org/meeting/100/materials/slides-100-panrg-04-the-ietf-alto-protocol-and-its-extensions/
Relevance of ALTO identified at PANRG

• Brian Trammel one of PANRG chairs presented a draft on open questions to be addressed at PANRG
 • See https://datatracker.ietf.org/meeting/100/materials/slides-100-panrg-06-open-questions/

• Among questions
 • "how do endpoints discover trustworthy path properties?"

• Presentation mentions that
 • SCION (a path-aware Internet architecture presented at IETF99) and ALTO represent points in this design space.
ALTO-PANRG discussions desirable

- To see how ALTO can serve PANRG goals.
- Given that PANRG focuses on the mechanisms leveraging on protocols rather than on protocols themselves,
- To see what use cases PANRG finds relevant to ALTO
- What particular ALTO feature would are existing or needed
- What existing and future protocol extensions may help for those use cases
Back-up slides

• ALTO ligthing talk at PANRG session – IETF 100
Open questions in PANRG & challenges

• See https://tools.ietf.org/html/draft-trammell-panrg-questions-01 11/07

• How are path properties defined and represented?

• How do endpoints get access to trustworthy path properties?

• How can endpoints select paths to use for traffic in a way that can be trusted by the network?

• How can interfaces to the transport and application layers support the use of path awareness?

• How can a path aware network in a path aware internetwork be effectively operated, given control inputs from the network administrator as well as from the endpoints?

• Some challenges gathered from list discussions
 • Different priorities for hosts and networks
 • Privacy concerns on both sides
 • “pseudo” instead of “real” path information more appropriate for end points and more realistic from networks’ controller
 • What is the appropriate level of exposure?
The IETF ALTO protocol

• Exposes abstracted operator-centric network view to applications and end hosts
• Goal: guide applications for a topology-aware selection among several endpoints
 • Trading operator cost efficiency with equal or better application performance
• To this end, ALTO offers RESTful APIs to convey provider-defined
 • **ALTO network map**: set of network location groupings with Provider-Defined Identifier (PID) and enumerated endpoints in each group.
 • **PID**: indirect and network agnostic manner to aggregate network endpoints that share some characteristic: subnet, POP, autonomous system, central office, …
 • **ALTO cost map**: pairwise e2e path costs amongst sets of source and destination PIDs or endpoints.
• ALTO thus hides complexity and confidentiality
 • Network can protect confidential network state information, by abstracting real metric values into non-real numerical scores or ordinal ranking
• ALTO information assumed not available to 3rd parties by other means
• Requires mutual trust between operator and applications
- "single node" topology abstraction
- 1 path per destination
- Specifies and conveys 1 single "routingcost" metric between src and dest

GET /costmap/num/routingcost HTTP/1.1

HTTP/1.1 200 OK

{ "meta" : { "cost-type" : { "cost-mode" : "numerical", "cost-metric" : "routingcost" }, "cost-map" : { "PID1" : { "PID1" : 1, "PID2" : 5, "PID3" : 8, "PID4" : 6 }, "PID2" : { "PID1" : 5, "PID2" : 1, "PID3" : 1, "PID4" : 8 }, "PID3" : { "PID1" : 5, "PID3" : 8, "PID3" : 1 }, "PID4" : { "PID1" : 6, "PID2" : 10, "PID3" : 1 } } } }

PID = City, Region, any name, ...
IETF ALTO WG extensions relating to PANRG

- Base protocol: [RFC 7285] = **WHERE to connect**
- The ALTO WG specifies protocol extensions for deeper insight in paths
- Relation to PANRG: **HOW to connect** given $N \geq 1$ paths / destination
 - ALTO Path Vector Cost Mode = multi-switch path [id-pvect]
 - Exposes abstraction of some intermediate steps of available paths
 - ALTO Contextual Cost Values: several costs per metric for one dest [pd-acont]
 - Exposes costs given qualitative parameters such as « access type » or others
 - Multi-Cost ALTO [RFC 8189]
 - Exposes costs IF path is feasible : w.r.t. constraints on cost values – path filtering
- **ALTO Network Performance Cost Metrics** [id-aperf]
 - Abstraction of network delay, jitter, packet loss, hop count, and bandwidth
- **WHEN to connect = ALTO Cost Calendars** [id-acal]
 - 1 or N destinations, one path for each
HOW to connect - ALTO path vector- in progress

Provides abstracted details on paths
- Abstracted Network Elements (ANE)
 - Set of $N \geq 1$ switches, links, networks, …
 - ANE properties may be exposed in a separate « ANE property map »

HTTP/1.1 200 OK
...
{
"meta": {
 "dependent-vtags": [...],
 "multi-cost-types": [
 {"cost-mode": "array", "cost-metric": "ane-path"},
 {"cost-mode": "numerical", "cost-metric": "BWcapa"},

 vtag": { //information to get ANE properties}
 },
"cost-map": {
 "PID1": {
 "PID2": [["ane:L15", "ane:L56", "ane:L67", "ane:L72"], 100]},
 "PID3":
 "PID4": [["ane:L35", "ane:L57", "ane:L74"], 100] }}

The application thus knows whether flows share bottleneck and how much total capacity they get

All link capacities = 100
HOW to connect - ALTO Cost Context – in progress

Several access paths possible
UE requests path Perf
• Given access type and SLA

HTTP/1.1 200 OK
Content-Length: [TODO]
Content-Type: application/alto-endpointcost+json
{
 "meta": {
 "cost-type": {
 "cost-mode": "numerical",
 "cost-metric": "BWscore"
 }
 },
 "context-params": [["cell", "wifi"], ["SLA-3"]]
}
"endpoint-cost-map": {
 "ipv4:192.0.2.2": {
 "ipv4:192.0.2.89": [10, 5],
 }
}
}

Array of 2 context-based values:
[cell AND sla3, wifi AND sla3]
HOW to connect – Multi-Cost ALTO with constraints

Client can request « routingcost » + « BW capacity »
On paths with EITHER lower cost and bandwidth
OR higher cost and bandwidth

ALTO response provided ONLY on paths meeting the constraints

POST /costmap/filtered HTTP/1.1
...

{ "multi-cost-types" : ["cost-mode": "numerical", "cost-metric": "routingcost", "cost-mode": "numerical", "cost-metric": "BWcapa"],
"or-constraints" : [["[0] le 30", "[1] le 70"]
["[0] le 50", "[1] gt 80"]],
"pids" : {"srcs" : ["PID1"],
"dists" : ["PID2", "PID3"]}
}

HTTP/1.1 200 OK
Content-Type: application/alto-costmap+json
{
"meta" : {
"dependent-vgtags" : [],
"multi-cost-types" : [...]
}"cost-map" : {
"PID1" : {
"PID2" : [40, 90]
}
}}
WHEN to connect – ALTO Cost Calendars – in progress

HTTP/1.1 200 OK
Content-Type: application/alto-costmap+json
Content-Length: ###
{
 "meta" : {...
 "cost-type" : {"cost-mode": "numerical", "cost-metric": « BWcapa"},

 "calendar-response-attributes" : {
 "calendar-start-time" : Wed, 18 Oct 2017 00:00:00 GMT,
 "time-interval-size" : "4 hour",
 "numb-intervals" : 6 }
 } // end meta

"cost-map" : {
 "PID1" : {
 "PID2" : [90, 70, 80, 90],
 "PID4" : [90, 80, 60, 80]
 } }

• Array of time-dependent cost values
• Attributes specifying how to understand them
References

• ALTO Status Pages
 • https://tools.ietf.org/wg/alto/

 • https://tools.ietf.org/html/rfc7285

• [id-pvect] « ALTO Extension: Path Vector Cost Mode »

• [pd-acont] « ALTO Contextual Cost Values »
 • https://tools.ietf.org/id/draft-randriamasy-alto-cost-context-02.txt

• [RFC 8189] « Multi-Cost ALTO »
 • https://tools.ietf.org/html/rfc8189

• [id-aperf] « ALTO Performance Cost Metrics »

• [id-acal] « ALTO Cost Calendar »
 • https://tools.ietf.org/html/draft-ietf-alto-cost-calendar-02