
BIP32-Ed25519

Dmitry Khovratovich Jason Law

University of Luxembourg

Evernym, Inc.

April 30th, 2017

Story of BIP32

Bitcoin wallet:

• Need of multiple addresses to minimize privacy leakage, every
address is used just once;

• Single secret to derive all private keys;

• Public key generation can be delegated to third parties
(example: web-shops);

• Hierarchy or its part can be proven without disclosing the
seed.

Bitcoin curve linearity

Bitcoin uses the secp256k1 curve:

• Base point B;

• Private-public key pair: (k, [k] · B);

• ECDSA signature needs a fresh randomness for each message;

• Linearity property: for any a the pair (k + a, [k]B + [a] · B) is
a valid keypair.

BIP32 standard

Hierarchy of keys:

• Exploit the linearity of secp256k1 to generate arbitrarily many
keypairs:

(kpriv , kpub) = (k + a, [k]B + [a] · B).

• Generate a′i ← F (kpub, i , c) to get hierarchy indexed by i and
controlled by the chain code c (can be disclosed if needed);

• Branches for i ≥ 231 are called hardened as they need the
private key to be produced.

Drawbacks:

• No design rationale;

• Too heavy primitives (HMAC instead of hash etc.)

Ed25519/EdDSA

EdDSA:

• Based on the curve used for the DH handshake;

• Public design rationale;

• Security by design;

• Schnorr signatures: deterministic generation;

• Better performance;

• Non-trivial private key derivation from a master secret;

• Non-linear key space.

The EdDSA standard allows reusing the public keys as encryption
keys derived from the DH handshake on Curve25519. This is (to
some extent) used in SC4 and X3DH protocols.

Ed25519 signature generation

k̃

H

for public key for signatures

B

kL

A

M

H

message

H

public key

Rs

signature

kL

Byte 0

000**** *

Byte 1 Byte 31

*10 **** *

r

x

kR

setting bits

Need in BIP32-Ed25519

Many systems need both hierarchical keys and fast/secure
signatures:

• Tor key blinding (in response to hidden services
deanonymization attacks).

• Zcash decided to use the Bitcoin curve partly because no
derivation scheme was proposed for Ed25519.

• Sovrin, the identity ledger, uses Ed25519 signatures and needs
key derivation for users.

Possible to combine?

BIP32-Ed25519, minimum requirements:

• Hierarchical key derivation;

• Signatures verification compatible with existing API of
Ed25519-supporting libraries.

Additional requirements:

• Maximum compatibility with existing BIP32 code;

• Signature generation compatible with the existing API;

• Keypairs compatible with Curve25519;

• No potential vulnerabilities introduced.

Main problems

• Master secret undergoes hashing in Ed25519;
• The private key space is nonlinear;
• The BIP32 code generates 256-bit scalars for private keys,

whereas we might need more.

k̃

H

for public key for signatures

B

kL

A

M

H

message

H

public key

Rs

signature

kL

Byte 0

000**** *

Byte 1 Byte 31

*10 **** *

r

x

kR

setting bits

Mitigations:
• Work on extended private keys rather than on master secrets;
• Filtering master secrets to ensure key space linearity;
• Cloning HMAC calls.

Main problems

• Master secret undergoes hashing in Ed25519;

• The private key space is nonlinear;

• The BIP32 code generates 256-bit scalars for private keys,
whereas we might need more.

Mitigations:

• Work on extended private keys rather than on master secrets;

• Filtering master secrets to ensure key space linearity;

• Cloning HMAC calls.

Our solution

”BIP32-Ed25519: Hierarchical Deterministic Keys over a
Non-linear Keyspace”, IEEE S&B workshop 2017.

k̃

H

for public key for signatures

B

kL

A

M

H

message

H

public key

Rs

signature

child index

private child key derivation

kL

28 bytes 32bytes

Byte 0

000**** *

Byte 1 Byte 31

010 **** *

r

x

kR

setting bits

ZL ZR

H

chain code

HMAC

reject if bit is not zero

https://drive.google.com/open?id=0ByMtMw2hul0EMFJuNnZORDR2NDA
https://drive.google.com/open?id=0ByMtMw2hul0EMFJuNnZORDR2NDA

Chain v1

Independently of us, the Chain team released their own version of
BIP32-Ed25519 in the fall of 2016. Main highlights:

• No extra bit zeroed/checked in the private key, so easy
overflows.

• As a result, side-channel timing leakage, thus timing attacks
on the key generation are possible.

• The signature procedure incompatible with the EdDSA
procedure (an extra HMAC call in the beginning).

• Some key parts are exposed to the public for the unknown
reasons.

Chain v2

After a conversation with us Chain released an updated version in
March 2017.

k̃

for public key for signatures

B

kL

A

M

H

message

H

public key

Rs

signature

child string

private child key derivation

kL

prune high and low bits 32bytes

Byte 0

000**** *

Byte 1 Byte 31

010 **** *

r

x

kR

setting bits

ZL ZR

HMAC

set bit to zero

HMAC

HMAC

Chain v2

k̃

for public key for signatures

B

kL

A

M

H

message

H

public key

Rs

signature

child string

private child key derivation

kL

prune high and low bits 32bytes

Byte 0

000**** *

Byte 1 Byte 31

010 **** *

r

x

kR

setting bits

ZL ZR

HMAC

set bit to zero

HMAC

HMAC

Crucial points: no more timing leakage, replacing the chain code
with a key-derived value.
However, more intrusive: an extra HMAC call for the master
secret, still incompatibility in the signature process.

Possible workaround

Both worlds combined:

k̃

for public key for signatures

B

A

M

H

message

H

public key

Rs

signature

child string

private child key derivation

kL

prune high and low bits 32bytes

Byte 0

000**** *

Byte 1 Byte 31

010 **** *

r

x

kR

setting bits

ZL ZR

HMAC

set bit to zero or reject

H

H

Need for feedback

1 Other applications that need hierarchical keys;

2 Should the new private keys be compatible with Ed25519
private keys?

3 Will the new private keys be used for the DH handshake?

4 Should the signature generation process be the same as in
Ed25519?

5 How much can we deviate from BIP32? Drop HMACs?

