
Evaluation of secp256k1 as
Popular Alternative Curve

 Christopher Allen, Principal Architect / Blockstream

CFRG Interim Meeting, Paris — April 30, 2017

What is secp256k1?
Variant of ECDSA:

● ECDSA was created by NSA and is

defined in NIST 186-3 DSS Standard,

and uses the elliptic curve secp256r1

● secp256k1 addressed concerns by

cryptographic community as to

possible hidden parameters in the

ECDSA random coefficient

● Simpler structure, fewer choices, thus

less ways for a malicious party to

introduce vulnerabilities

Improvements in secp256k1:

● Significant performance improvements

over NIST-based ECDSA, which is

currently allowed for standards

● Uses a Koblitz-like curve for efficient

computation, is often ~30% faster for

verification than ECDSA

● Currently ~30% slower than

Ed25519-donna for signing, but

anticipating some future speed

improvements

Why is secp256k1 important?
De-facto standard for blockchains

● Used by Bitcoin, Ethereum, Zcash and

many other blockchains

● In Bitcoin alone, ~260K transactions a

day for ~$390M volume per day

● Protecting $25B+ markets!

● "Largest Bug Bounty in the World!"

● May not be most current work in

elliptic curve, but "good enough"

Significant usage

● In active use since 2009

● Multiple interoperable

implementations

● Multiple languages: libsecp256k1 (C),

Bouncy Castle (Java VM), Crypto++

(C++), secp256k1-go (Go),

tiny-secp256k1 (Rust), elliptic-curve-js

(Javascript)

libsecp256k1: fast, strong, well-reviewed, well-tested
Most used implementation: libsecp256k1 (C)

● Fast: validation of signatures increased

5x over original OpenSSL

● Significant review and high test

coverage

● Hand verifiable proof of correctness

for the field multiplication algorithm

● Computer verified proof of correctness

for group addition formulae

● Special compilable mode that changes

a constant to end up with a very small

group, and exhaustive tests that all

assumptions remain true

● Test cases for the scalar code that were

extracted from a set of 1 trillion

randomly generated tests which give

very high coverage, and work in

progress to algebraically derive cases

that trigger the (nearly) unreachable

remaining ones

Why not use a more current standard?

● Ed25519 is non-linear, thus there have

been no standards for HD

(Hierarchical Deterministic) Key

derivation used by most blockchains

Why not use Ed25519 or a more recent

curve?

● More modern curves did not exist or

were not well studied when first

blockchains began

● Due to stability required by consensus

protocols and financial code,

established blockchains can't easily

switch to other curves

Why allow secp256k1 for Standards?
Blockchain standards are local and ad-hoc

● Many blockchain communities are

already using secp256k1 with JWT.

However, all are non-conformant to

published standard

● We can improve security by making

secp256k1-based implementations

conform to standards

● Support of secp256k1 brings

blockchain communities into standards

efforts

Where to be used?

● For interoperability reasons, greatest

need is in W3C to support secp256k1

in Web Payments & Verifiable Claims

Working Groups

● These W3C groups use IETF JOSE

standards for such as JWS for JSON

Signing and Encryption.

● Curve not be requested for all existing

standards, for instance no requests to

secp256k1 add to TLS or SSH.

What do we need to do get CFRG to evaluate and
approve secp256k1 for optional use in IETF standards?

ChristopherA@LifeWithAlacrity.com

ChristopherA@Blockstream.com

mailto:ChristopherA@LifeWithAlacrity.com
mailto:ChristopherA@LifeWithAlacrity.com
mailto:ChristopherA@Blockstream.com
mailto:ChristopherA@Blockstream.com

