Security and Privacy Analysis of NSF Future Internet Architectures

Moreno Ambrosin¹, Alberto Compagno², Mauro Conti¹, Cesar Ghali³, Gene Tsudik³

¹University of Padua, Italy ²University "La Sapienza" of Rome, Italy ³University of California Irvine, CA, USA

Internet Security & Privacy

- S&P in the current Internet are certainly NOT a success story
- Retrofitted, incremental, band-aid-style solutions, e.g.:
 - SSH,
 - SSL/TLS,
 - IPSec + IKE,
 - DNSSec,
 - sBGP, etc.

NSF Future Internet Architectures (FIA) program

- Targeted NSF-funded program, 2-tiered competition
- Major goals:
 - Design comprehensive next-generation Internet architectures
 - Accommodate current and emerging communication paradigms
 - Security and privacy from the outset (by design)
- Projects:
 - NDN: Named-Data Networking (Phases I and II)
 - MobilityFirst (Phases I and II)
 - XIA: eXpressive Internet Architecture (Phases I and II)
 - ChoiceNet (started in 2012, not strictly speaking FIA)
 - Nebula (Phase I)

NSF Future Internet Architectures (FIA) program

- Targeted NSF-funded program, 2-tiered competition
- Major goals:
 - Design comprehensive next-generation Internet architectures
 - Accommodate current and emerging communication paradigms
 - Security and privacy from the outset (by design)
- Projects:
 - NDN: Named-Data Networking (Phases I and II)
 - MobilityFirst (Phases I and II)
 - XIA: eXpressive Internet Architecture (Phases I and II)
 - ChoiceNet (started in 2012, not strictly speaking FIA)
 - Nebula (Phase I)

Our Comparison

- S&P of the network layer (data plane) of 4 FIA architectures with IP (IPSec)
 - Trust, Data origin authentication, Peer entity authentication, Data integrity, Authorization and access control, Accountability, Data confidentiality, Traffic flow confidentiality, Anonymous communication
- Here, we discuss only some of them for NDN, MF, and XIA
 - The more interesting ones

NDN & CCNx

- "Named data networking project (NDN)", <u>http://named-data.org</u>
- "Content centric networking (CCNx) project", <u>http://www.ccnx.org</u>
- "Networking named content", ACM CoNEXT, 2009.

Security

- Integrity and trust as properties of content
 - Every content packet carries a signature
 - Producer generates the signature (producers have identities)
- Confidentiality through encryption

NDN/CCN vs IP: S&P Comparison (1/3)

- Trust:
 - IP: In IPSec end-hosts are trusted
 - NDN: Trust is on content, not host. Different granularity (namespace, content object)
- Data Origin Authentication and Integrity:
 - IP: Available only within an IPSec pipe (e.g., gateway-to-gateway).
 - NDN: Content signature bound to producer identity no matter where they come from

NDN/CCN vs IP: S&P Comparison (2/3)

- Peer entity authentication:
 - IP: During SA establishment peers of an IPSec connection are authenticated
 - NDN: Not available. However, signed interest helps to authenticate consumers
- Authorization & Access Control:
 - IP: No suitable access control for content at this layer
 - NDN: Access control on content mainly through encryption

NDN/CCN vs IP: S&P Comparison (3/3)

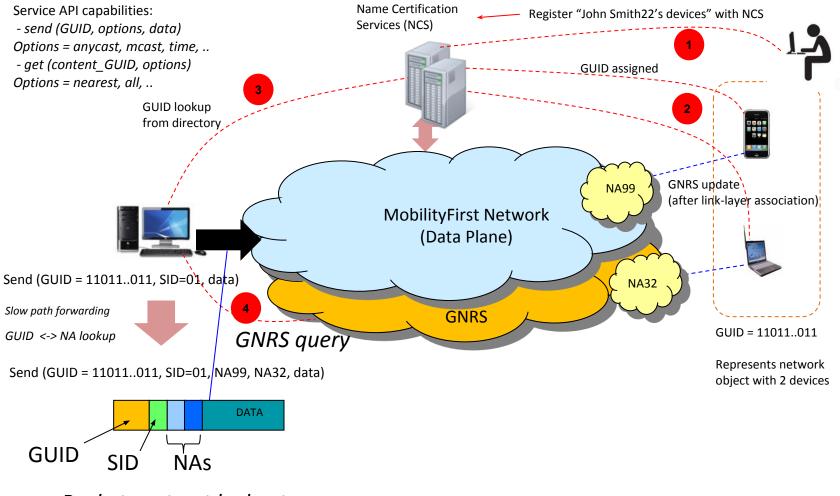
- Availability (resilience to DoS):
 - IP: Bandwidth depletion (flooding) easy to achieve (IP spoofing, amplification, reflection)
 - NDN: Bandwidth depletion harder due to pull-based communication and aggregation

Attacks on NDN & CCN

- Router resource exhaustion:
 - Interest flooding attack exhaust PIT
- Cache Related attacks
 - Content poisoning
 - Cache pollution

MobilityFirst

antes M. Land


Overview: MobilityFirst: A Mobility-Centric and Trustworthy Internet Architecture, ACM CCR 2014.

Project webpage: http://mobilityfirst.winlab.rutgers.edu/

IIII

MG

MobilityFirst – Example

Packet sent out by host

MF vs IP: S&P Comparison

- Trust:
 - IP: In IPSec end hosts are trusted
 - MF: trust on hosts, content and services. Self-certifying GUID increase trust.

- Peer Entity Authentication:
 - IP: ISAKMP relies on PKI or pre-shared keys
 - MF: SCN for GUID makes easy to achieve without PKI

MF vs IP: S&P Comparison

• Data Integrity:

- IP: Apply to packets coming from the other end of the IPSec pipe
- MF: Only for content principals. GUID is the hash of the content

- Data origin authentication, Data confidentiality, Traffic flow confidentiality, Anonymous communication, Accountability, Availability:
 - \odot $\,$ No difference between MF and IP $\,$

Attacks on MobilityFirst

- Information manipulation:
 - AS can withdraw IP address storing GNRS mapping
 - All (orphan) mappings move to next AS
 - Original AS is responsible for moving them
 - \bigcirc GNRS is not secure \rightarrow adversary can inject (orphan) mappings
- Late binding: slow path can be abused to launch DoS attacks on routers
- Nasty GUID-NA mapping: adversary sends PDU with fake GUID-NA mapping. Destination border router forced to query GNRS to discover correct NA

eXpressive Internet Architecture

XIA

- Current internet focuses on one principal, e.g., IP
- Communication with others add complexity
- Future internet should be x-centric
- XIA is a principal-centric approach
- Principals: host, domain, service, content ...
- XIA Goal:
 - Intrinsic security: principals should be secure without external validation information

XIA – Design Requirements

- Users and applications must be able to express their intent:
 - Any intent types should (will) be supported
- Principal types must be able to evolve:
 - Adding principals should be possible and easy
 - Network adaptation could be incremental
- Principal identifiers should be intrinsically secure
- Host-to-host communication, hosts should be authenticated
- Content retrieval, data integrity and validity

XIA – Design Requirements

- Must define:
 - Semantics of communicating with the principal
 - Unique XID (principle ID), e.g. HIDs, SIDs, CIDs, and ADs
 - Way to generate these ID and map them to intrinsic security properties
 - In-network processing and routing of packets (should be consistent and distributed)

XIA Data Plane

- XIP: allows communication, and defines address, header format, per-principal processing
- Principal type-specific support: e.g.
 - Host principle might use traditional routing
 - Content principal might check local cache before forwarding requests

XIA – Principals

- Host:
 - HID: hash of public key
 - Constant regardless of the host's network
- Network:
 - NID: hash of public key
 - Networks contains multiple hosts
- Service:
 - SID: hash of public key
 - Similar to destination port
 - Destination address: NID:HID:SID

XIA – Principals

- Content:
 - CID: hash of content
 - Address Usually has fallback
 - Can be retrieved from host or cache
 - O Packet contains content-specific header
- All routers must be able to process NID and HID principles
- For other principles, routers must perform at least basic processing, e.g. forwarding

XIA vs. IP: S&P Comparison

- Trust:
 - SCION is used for trusted path selection
 - SCION provides control and isolation for secure, available end-to-end communication

- Data origin authentication, Peer entity authentication:
 - IPSec provides these features
 - Not provided by design
 - Self-certifying names can be used to provide these features

XIA vs. IP: S&P Comparison

- Integrity:
 - Provided by IPSec in IP
 - Only available for content principals since identifiers generated based on content hash
 - Deferred to application for other principal types

- Authorization & access control:
 - \circ Combination of IP and NDN
 - Content principals: at content granularity
 - Other principal types: ACLs can be used

XIA vs. IP: S&P Comparison

- Availability:
 - Bandwidth depletion easy to achieve, similar to IP
 - Self-certifying names obviate content poisoning attacks
- Anonymous Communication:
 - Can be provided by IP using, e.g., TOR
 - Suffer from same problem as IP: src and dst included in packets
 - XIA also contains the entire path ... even worse
 - IP-like methods can be used, e.g., TOR.

Summary

Security & Privacy Features	Network layers			
	Nebula	NDN	MF	XIA
Trust	1	1	1	1
Data Origin Authentication	0	1	X	×
Peer entity Authentication	0	0	0	0
Data Integrity	0	1	X	×
Authorization and Access Control	1	0	0	0
Accountability	1	0	0	0
Data Confidentiality	×	1	X	×
Traffic Flow Confidentiality	×	×	X	×
Anonymous Communication	×	×	X	×
Availability	0	0	0	0

Thank You... Questions?

Who is NDN?

parc AXerox Company

University of Colorado Boulder

Northeastern University

NDN Basic Concepts

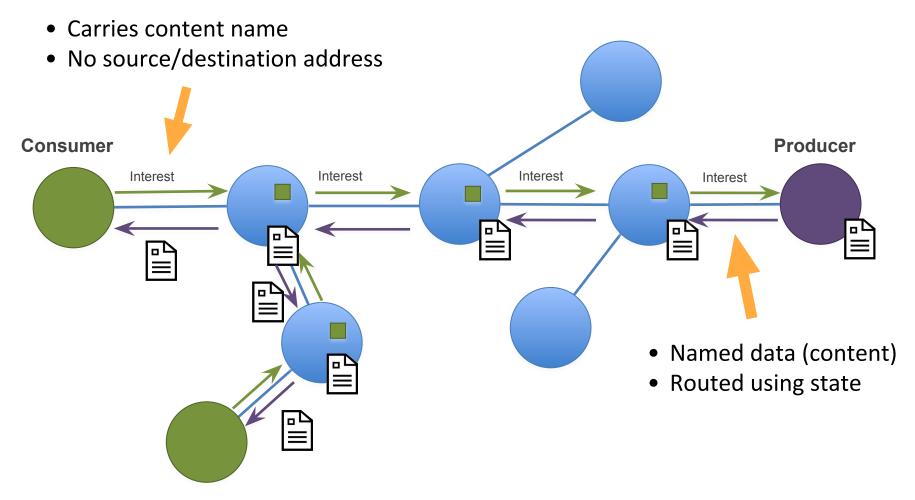
- Name:
 - Human-readable, path/url like
- Roles:
 - O Consumer
 - Producer
 - Router
- Objects:
 - Content

NDN: quick recap (1/2)

• PRODUCER

- Announces name prefixes
- Names and signs content packets
- Injects content by answering interests

CONSUMER


- Generates interest packets referring to content by name
- Receives content, verifies signature, decrypts if necessary

NDN: quick recap (2/2)

• ROUTER

- Routes interests based on (hierarchical) name prefixes
 - Inherently multicast
- Remembers where Interests came from (PIT)
 - Returns content along same path
- Optionally caches content (in CS)
- May verify content signatures

How NDN works (abbrv. version)

The Players:

- Rutgers University
- University of Massachusetts Amherst
- Duke University
- MIT
- University of Wisconsin, Madison
- University of Nebraska

MobilityFirst Design Concepts

- Design principles:
 - wireless connections are ubiquitous and pervasive
 - seamless mobility in endpoints
 - network resilience to endpoints and router compromission
- Key idea:
 - separate identity from location
- Three types of identifiers:

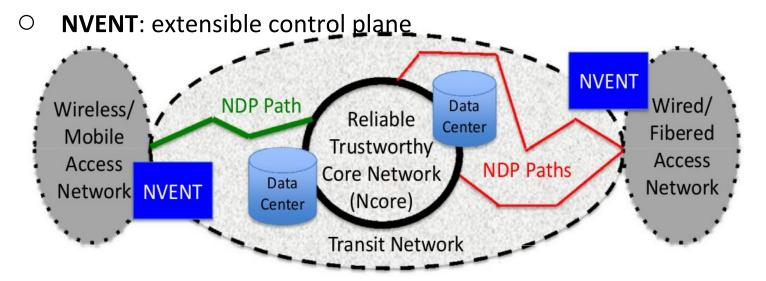
• Human Readable Names (HRN)

MobilityFirst

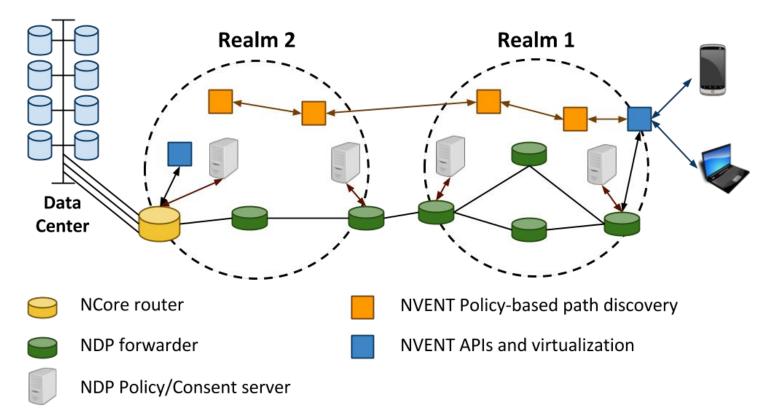
- GUID uniquely identifies a principal: host or content
- HRN-s are not used for routing; translated to GUID-s
- GUID-s and NA-s are used for routing/forwarding
- Two translation services:
 - Name Certification Service (NCS):
 - Translates HRN $\leftarrow \rightarrow$ GUID
 - General Name Resolution Service (GNRS):
 - Translates GUID $\leftarrow \rightarrow NA$

Nebula

Summary: "A Brief Overview of the NEBULA Future Internet Architecture,", ACM Computer Communication Review, July 2014.


http://nebula-fia.org/

Nebula Partners



Architecture

- Goal: provide a secure cloud-oriented networking architecture
- Three components
 - **NCore**: ultra-reliable, redundantly-connected core routers
 - **NDP**: multi-path, policy-enforcing control plane

Security Overview

- NVENT: establishes trustworthy routes based on policy routing
- NDP: constrains data packets to NVENT-selected routes by enforcing <u>consent and provenance</u>
- NCore: ensures availability via ultra-reliable routers and interconnection architectures for data centers

Nebula Data Plane (NDP)

- Offers secure communication
 - When all relevant parties agree to participate
- Uses ICING: <u>http://www.cs.utexas.edu/icing/</u>
- ICING provides:
 - Path verification mechanism (PVM)
 - Path selection
 - Topology discovery
 - Forwarding

NDP - Naming

- NDP realms use self-certifying names (SCNs)
- Realm name is a self-generated PK (Public Key)

○ Can create spurious realms but not impersonate

- No need for central naming authority
- Node names also SCN-based
- NDP nodes use non-interactive Diffie-Hellman (NIDH) to establish pairwise PoP keys
 - But, how are DH PKs distributed? SCNs...

NDP - ICING

- Path Verification Mechanism (PVM):
 - Path Consent via *Proof-of-Consent (PoC)*:
 - Each intervening node agrees to be part of path based on its (realm) policy
 - Path Compliance via *Proof-of-Provenance (PoP)*:
 - Forwarding node checks whether:
 - Path has been approved
 - Previous nodes followed forwarding policy
 - PoC-s and PoP-s are implemented as cryptographic tokens (MAC)

NDP - ICING

- Prior to communication, sender requests *PoC_i* from each path node *N_i*
 - Actually, from each distinct provider on the path
- *PoC_i* generated by consent server at *N_i*'s provider (Here, provider = realm)
 - Not session-specific
- Each provider has at least one consent server
- *PoC*, means:

NDP vs IP: S&P Comparison (1/3)

- Trust
 - IP: IPSec secures communication between two or more network entities (hosts or networks) ← "end-to-end" trust
 - Nebula: ICING guarantee path consent and provenance ← trust among sender and intermediate nodes of a path
- Peer entity authentication
 - IP: During SA establishment peers of an IPSec connection are authenticated
 - Nebula: path consent authenticate sender and intermediate nodes

NDP vs IP: S&P Comparison (2/3)

- Integrity
 - **IP**: given by AH or ESP header
 - Nebula: comes with consent and provenance. Mainly gateway will verify integrity
- Authorization & Access Control:
 - IP: Routers applies access control list on IP addresses (or prefixes)
 - **Nebula**: Consent server grant access to a network through PoC
- Accountability

NDP vs IP: S&P Comparison (3/3)

- Availability:
 - IP: Bandwidth depletion easy to achieve (IP spoofing, amplification, reflection)
 - **Nebula**: Bandwidth depletion hard to mount due to path consent
- Anonymous Communication:
 - **IP**: not provided. Tor "guarantee" anonymity
 - **Nebula**: hard to achieve due to path consent and provenance

Attacks on Nebula (1/2)

- NDP (ICING) Router "slow path" attacks:
 - PoP computation by router may required NIDH to compute pairwise keys – time-consuming
 - Packets with fake node IDs can force routers to perform expensive crypto operations
 - ICING uses explicit "hardeners" in the header to prevent such attacks:

 V_i .hardener = PRF-32(PoC_i.proof, 0 || HASH(P || M))

Attacks on Nebula (2/2)

- NDP (ICING) packet-level attacks:
 - Replay attacks:
 - Adv replays copies of valid packets
 - Sequence number (16 bits)
 - Injection attacks:
 - Adv injects fake packets
 - Easy to detect (most crypto ops are lightweight)