

Update on the NSF-Intel partnership on ICN-WEN (Information Centric-Networking in Wireless Edge Networks)

Srikathyayani Srikanteswara Jeff Foerster Richard Chow Intel Labs & URO

Thyagarajan Nandagopal
Darleen Fisher
National Science Foundation

Eve Schooler Intel IoT Group

NSF-Intel ICN-WEN Partnership:

\$6.5M over 3 years, 3 projects awarded

- Focus on Wireless Edge Networks
 - Ultra low-latency and massive IoT applications
- ICN approach to 3 dimensions:
 - wireless device endpoints
 - wireless network infrastructure and architecture
 - wireless data security and privacy
- Clean-slate design
- Research goals: NSF 16-586
 - Create new integrated ICN approach for wireless nets
 - Address fundamental challenges of wireless ICN data delivery
 - Demonstrate & quantify benefits of a potential ICN-WEN
 - Evaluate realistic deployments & implementation complexities

Update

- Discussed ICN-WEN details @ IETF 98, March 2017
- Announced Awardees, May 2017
- Held kick-off workshop @ Intel, June 2017

ICN-WEN Program

Board Of Advisors: Udayan Mukherjee, Eve Schooler, Geng Wu, Dave Oran, Christian Tschudin, Morley Mao

Title: ICN-Enabled Secure Edge Networking with Augmented Reality

PI: Lixia Zhang

Participating Universities: UCLA, New Mexico State University

Title: SPLICE: Secure Predictive Low-latency Information Centric Edge for Next-Generation Wireless Networks

PI: P. R. Kumar

Participating Universities: Texas A&M, Washington University St. Louis, Purdue, Ohio State, University of Illinois Urbana-Champaign

Title: Light-Speed Networking (LSN): Refactoring the Wireless Network Stack to Dramatically reduce Information Response Time

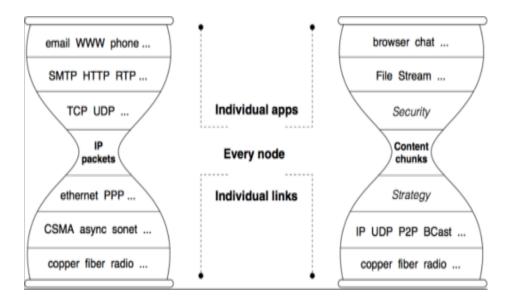
PI: Arun Venkatramani

Participating Universities: U. Massachusetts-Amherst, U. Wisconsin-Madison

Questions?

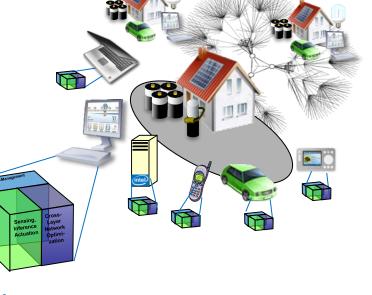
ICN-WEN Information Centric-Networking in Wireless Edge Networks

Srikathyayani Srikanteswara Jeff Foerster


Intel Labs (IL)

Eve SchoolerInternet of Things Group (IoTG)

Outline


- Backstory
- ICN-WEN Program
- Next Steps
- Bigger Picture

"Thin waist of the Internet"

Intel Backstory: ICN for IoT

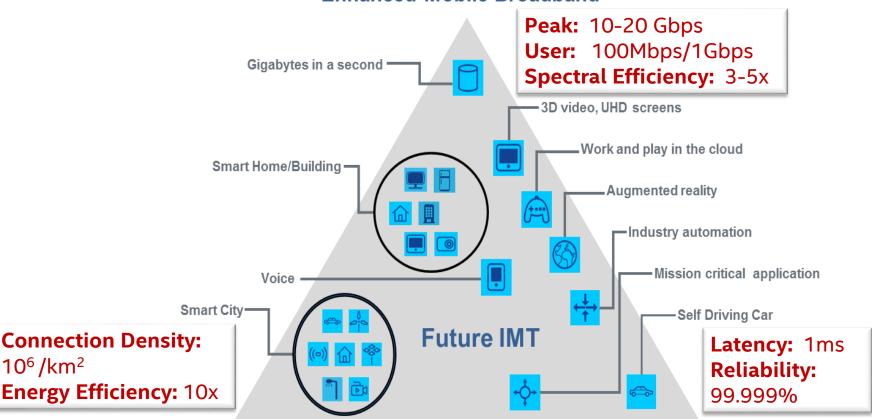
- Deployed ICN at the network edge
 - Within edge administrative domain
 - Sidestepped global deployment
- Built, evolved early IoT PoCs:
 ICN as a trusted data bus
 - Smart home Pub-sub & security APIs
 - Smart neighborhood Data-centric privacy
 - Massive IoT software updates Scalability
 - Edge computing Move the compute to the data
- Supplied user vs. router insights
- Grew partnership between Labs & IoTG

NSF-Intel ICN-WEN Program: \$6.5M over 3 years, 2-3 projects to be awarded

- Focus on Wireless Edge Networks
 - Ultra low-latency and massive IoT applications
- ICN approach to 3 dimensions:
 - wireless device endpoints
 - wireless network infrastructure and architecture
 - wireless data security and privacy
- Clean-slate design
- Research goals: NSF 16-586
 - Create new integrated ICN approach for wireless nets
 - Address fundamental challenges of wireless ICN data delivery
 - Demonstrate & quantify benefits of a potential ICN-WEN
 - Evaluate realistic deployments & implementation complexities

ICN and 5G+ Networks

- ICN over wireless a natural next step
- 5G+ use cases very different from traditional ones
 - High bw and support for large #s of devices
 - AR/VR, autonomous vehicles, dense IoT, robotics, drones, etc.
- New usage models where source-dest model falls short
 - Source is inaccessible: e.g., in sleep mode, offline, encounters congestion, mobility or interference
- IoT Data
 - Data often originates and is processed at the Edge
 - May (not) flow back to the core
 - ICN enables access to data within the network
 - With less application dependence



Translating to 5G Requirements:

ITU's IMT Vision

 $10^6 / \text{km}^2$

Enhanced Mobile Broadband

Massive Machine Type Communications

Ultra-reliable and Low Latency Communications

New metrics and wide variety and variability of Services

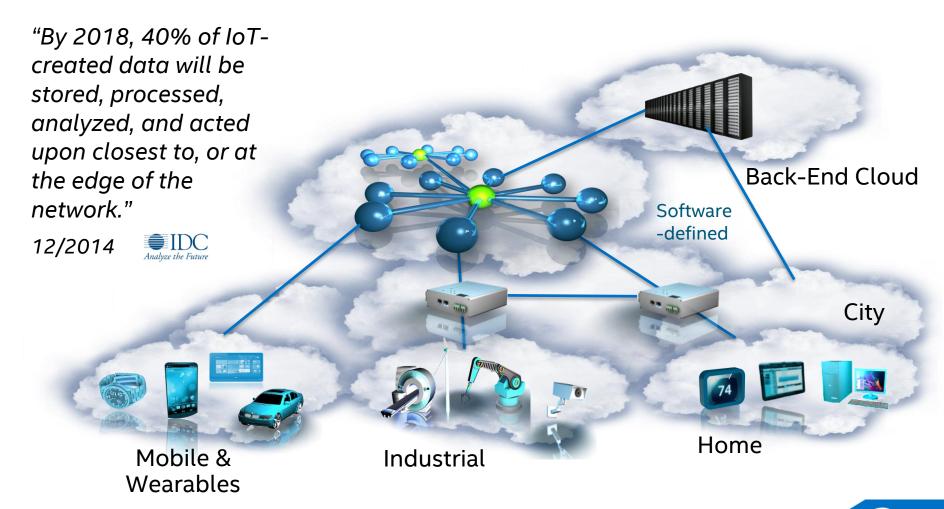
Likely ICN-over-Wireless Benefits?

- Wireless Edge Networks with dynamic reconfigurations and data requirements
 - Flow of data cannot be programmed during net setup
 - Benefits in routing and data management
- Data access benefits in Non-star topologies
 - Not simple Cellular and WiFi
 - Wireless mesh networks
- Liberation of meta-data
 - Use of contextual info in the lower layers w/out app dependence
- Support for reverse data flows
 - Combines routing with caching/storage ... & processing

Challenges and Hard Problems

- Producer mobility
- Security and Privacy
 - End user devices may have limited resources to implement complex encryption
 - How to establish trust?
- Bridging ICN islands with each other and with IP networks
- Modifications to ICN architecture to directly implement over wireless MAC layer
- Wireless co-design with ICN
 - Make ICN wireless-aware
 - Make wireless ICN-aware

Why is Intel interested in ICN?


- ICN has potential, but is it ready for prime time?
 - Develop practical ICN use cases
 - Develop ICN implementations that can be commercialized & standardized for industry adoption
- What is improved if we use ICN instead of IP?
- Evaluate potential for...
 - Being an industry solution
 - Implementing 5G+ networks
 - Meeting ultra low-latency requirements and massive IoT solutions
 - Enabling Edge/Fog computing...

Next Steps

Awardees to be announced Mid-May of 2017!

Bigger Picture

Data Inversion Problem: IoT Edge data flows upstream Cloud functionality migrating to be more proximate to the data

Problem: Legacy clouds fall short ...or are unusable

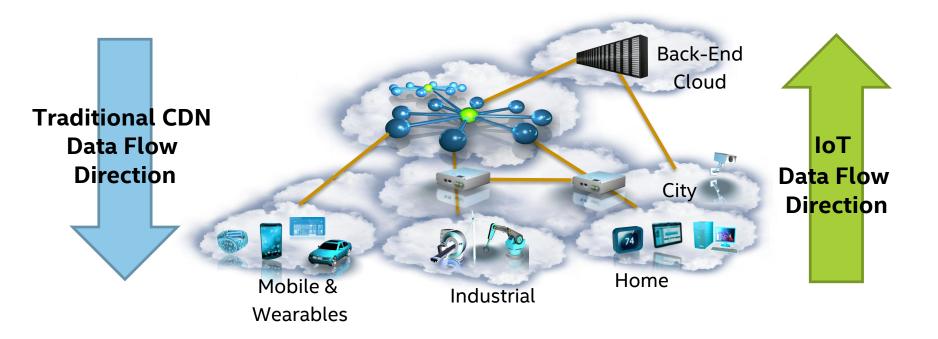
When the IoT data generated is

- Delay-sensitive
- High-volume
- Trust-sensitive
- (Intermittently) Disconnected

Countless examples

· Both near term & further out

Video Analytics



Augmented Reality

- Data heavy
- · Compute intensive
- Response times <30ms
- Small form factor
- Low power

Need for Edge and Fog Computing A Multi-tier Cloud of Clouds

Use ICN for rCDNs (reverse CDNs)?

Reverse data flows combining routing with storage and processing

Bigger Picture: From Cloud to Edge to Fog Computing

- IoT Data causing disruption ...
 - What's the <u>network+compute+storage</u> architecture needed?
 - What's the impact on privacy, security, trust models?
 - How/where to put the control?
- Liberation of data and meta-data
 - Accessible anywhere? Safeguarded everywhere?
- ICN's role in and/or relationship to...?
 - Fog data flows Intra-cloud, E/W and N/S (rCDNs)
 - Smart data/object frameworks
 - Data naming, lineage and interoperability
 - "Organically-grown" Trust