
Keyword-Based Mobile Application Sharing
through Information-Centric Connectivity

Dr Ioannis Psaras
EPSRC Fellow / Lecturer

University College London

Email: i.psaras@ucl.ac.uk

Web: http://www.ee.ucl.ac.uk/~ipsaras/

I. Psaras, S. Rene, K.V. Katsaros, V. Sourlas, N. Bezirgiannidis,
S. Diamantopoulos, I. Komnios, V. Tsaoussidis, G. Pavlou

ICNRG Interim Meeting
16th July 2017
Prague

Best Paper Award
ACM MobiArch 2016

Best Paper Award
ACM MobiArch 2016

http://www.ee.ucl.ac.uk/~ipsaras/

The Cloud is not enough

<rant>
•Always trying to reach the cloud does

 not work
– E.g. trains, airplances, crowded areas

•5G needs to integrate some edge-computing functionality

•The cloud is neither the only nor the best way

•There are enormous amounts of computation and storage available around us
– 5G has to exploit the computation, storage and software resources of edge devices

(smartphones, tablets, Raspberry PIs, WiFi APs)

•Connecting randomly to the nearest device does not work
– Information-Centric Connectivity becomes necessity when we need to specify to which of

the 100s of smartphone devices to connect to.
– This need does not exist when we always connect to the main cell tower

</rant>

What is KEBAPP – Contribution

Route Finder App Game or Video-Streaming Server

Super Boring!Super Boring!

An application sharing and information-
processing framework for smartphone apps

An application sharing and information-
processing framework for smartphone apps

What applications does KEBAPP deal with –
Design Space

• By and large, smartphone apps target:
– Static content, e.g., news updates

– Personalised content, e.g., Facebook/Twitter updates

– Processed information, e.g., route finder, gaming
• Keep demand for local services, locally!

We envision a pool of application resources to provide D2D
access to processed and non-personalised information

We envision a pool of application resources to provide D2D
access to processed and non-personalised information

Where/When do we need KEBAPP
(Target environments)

• Overcrowded areas
– Airports, festivals, stadiums, IETF :)

• Fragmented networks
– Natural disasters (floods, earthquakes)

• Not (or poorly) connected environments
– Airplanes, trains, ferries, developing regions

In most of those cases, Internet connectivity is not even
necessary!

In most of those cases, Internet connectivity is not even
necessary!

How does KEBAPP work?

1) Application-centric naming
– Applications share common name-spaces

and support the use of keywords

2) Application-centric connectivity
– Applications manage connectivity by defining

and/or joining WiFi broadcast domains

3) Information-centric forwarding
– Extending Named Data Networking

primitives

Applications act both as clients and as serversApplications act both as clients and as servers

Three Main ComponentsThree Main Components

In Name Out

Internal
face #1

/a/b/c#t1#t2 BSSID1

BSSID2 /d/e/f#t3#t4 Internal
face #2

Data Chunck Name

2a3b69e43f9bd48937 /d/e/f#t3#t4

Prefix BSSID Face

/a/b/c BSSID1 Internal
face #1

/d/e/f BSSID2 Internal
face #2

Content Store PIT FIB

Information-Centric Mobility

• Content is the addressable entity
– Not the host!

• Content is the routing target
– Not the host!

• Interface to the content is used
– Not to a socket!

• Content is secured individually
– Not the communication channel!

No need to keep references of moving nodesNo need to keep references of moving nodes

Information Exposure through Names

• ICN can enable features not possible with IP
– Exposure of information through names.

A network-layer naming scheme that enables fine-
grained description of the desired processed information

A network-layer naming scheme that enables fine-
grained description of the desired processed information

Application-Centric Naming (App IDs)

• Needs to support fine-grained description of the desired processed
information

• Fixed part: NDN hierarchical naming, longest prefix match
– Needs to guarantee compatibility between applications
– Can define static content: /NewsApp/politics/
– Or invoke computation: /myTravelAdvisor/Top10Restos
– App GUI indicates naming, users do not have to be aware of naming

• Hashtags: free keywords to assist application processing
– Enables partial matching of responses to requests
– /myTravelAdvisor/Top10Restos #userRating; #London; #indian
– /routeFinder/tube #euston; #waterloo

Application-Centric Connectivity

• Application-specific 802.11 broadcast domains, through
Basic Service Set(s), BSSs
– Need a “hook” between BSS and the corresponding application
– Every KEBAPP application advertises its own SSID, through

WiFi Direct Groups
– WiFi Neighbour-Awareness Networking (NAN) can find

applications behind BSSs – also optimised for energy efficiency

gameX
tripAdvisor

routeFinder

*K.V. Katsaros et. al. “Information-Centric Connectivity”
IEEE Communications Magazine, August 2016.
*K.V. Katsaros et. al. “Information-Centric Connectivity”
IEEE Communications Magazine, August 2016.

Route calculated

RouteFinder request

WifiDirect Connection

Information-Centric Forwarding

• We build on a modified version of NDN
• Forward messages to single-hop broadcasting (BSS) domains
• Single-hop operation

gameX
tripAdvisor

routeFinder

Name Prefix BSSID if

/travel/tripAdvisor #x #y tripAdvisor #1

/gaming/gameX #z gameX #2

Name Prefix BSSID if

/travel/routeFinder #x routeFinder #1

 Broadcast domains are considered as node interfaces
 FIB is populated with neighbouring BSSIDs
 Broadcast domains are considered as node interfaces
 FIB is populated with neighbouring BSSIDs

In Name Out

Internal
face #1

/a/b/c#t1#t2 BSSID1

BSSID2 /d/e/f#t3#t4 Internal
face #2

Data Chunck Name

2a3b69e43f9bd48937 /d/e/f#t3#t4

Prefix BSSID Face

/a/b/c BSSID1 Internal
face #1

/d/e/f BSSID2 Internal
face #2

Content Store PIT FIB

WiFi Manager populates

FIB with hierarchical name

advertised by SSID

BSSIDs are the new
interfaces

Server part of app
internalFace entry links

BSSID to specific app that
listens to this SSID.

One PIT entry per request

Feasibility – RouteFinder App

Setup
Mobility trace from 3300 users in a Stockholm
subway station throughout one hour

All users: 3300

KEBAB
Users (10%)

RouteFinder
App Users

Route Finder App

Vision: An Edge ICN IoT Platform based on
Information-Centric Connectivity

• The long-term plan is to develop a platform for IoT
applications
– users can build applications or applets
– API should be lightweight and easy to use, e.g., IFTTT-

like

• Some applications already implemented in
Raspberry PIs – plan to extend to WiFi APs through
OpenWRT

How to implement KEBAPP?
Android implementation components

KEBAPP
Application

Activity

KEBAPP
Application

Service

KEBAPP Application Model

KEBAPP Application

KEBAPP framework

jndn (java libs)

WiFiDirect libs

jndn-

manager

Naming / partial matching functions

Application model / functionalities

KEBAPP background service
KEBAPP
Foreground
app UI

NFD<->WiFiDirect interface

NDN
tables / routing / fwd options

Service discovery / connectivity

Network devices

KEBAPP APP software

KEBAPP middleware

Android OS

NFD

Thanks!

Dr Ioannis Psaras
University College London

http://www.ee.ucl.ac.uk/~ipsaras/

i.psaras@ucl.ac.uk

http://www.ee.ucl.ac.uk/~ipsaras/

BACKUP SLIDES

Taxi Share App / Carpooling

• Group commuters into taxis/vehicles locally
– User 1 wants to travel from A – C

– User 2 wants to travel from A – B, where B is along the
route A – C

– User 3 travels from A – D and so on

• Can’t think of many good reasons

 not to do this locally...

Online vs Offline Micropayment

23

send.php

Figure 11. Communication on online transfer

This class is called during online transfer. The server retrieves sender name, receiver name,
encrypted transfer amount, and signature sent by the user, which is the sender side in the
transaction. A signature is generated by the user using the user private key so the server
needs to decrypt it using the user public key. If the signature can be verified, the server will
decrypt the message. Since the transfer amount is encrypted using the server public key, the
server retrieves the private key to be used for decryption.

The server needs to check first if the sender and the receiver are not the same person and if
they both exist in the database. If these are verified, the sender and receiver balance are
obtained from the database and the transaction will be processed as long as the sender
balance is sufficient. The server will update the sender and receiver balance according to the
transfer amount. After these are updated to the database, the response is constructed to the
sender, since the request is sent from this side. The sender balance is encrypted using their
public key while the signature is signed by the server private key. This information will be
added to the response. Unlike in a register or login response, the public and private key are
not sent again since these have been saved by the user during user login.

24

sendvoucher.php

Figure 12. Communication on offline transfer

This class is called by the receiver side when transferring an offline voucher that contains two
signatures. The parameters to access this class are voucher ID, sender name, receiver name,
transfer amount, sender signature, and receiver signature. The server decrypts the message
using the server private key to get the actual value of voucher ID, sender name, receiver
name, and voucher amount. The sender and receiver name will be checked if they are
registered in the database.

Since every voucher that has been processed successfully is saved in the server local storage,
the server needs to check if the voucher file has already existed in the storage based on
voucher ID in the filename. The voucher will not be saved if the transaction is failed. If there
is no file related to this voucher in the storage, the sender and receiver signature will be
verified using the sender and receiver public key. This process is required to check if the
voucher was really sent by the correct sender and receiver. Once the signature verification is
successful, the server will check if the sender has a sufficient balance to make the transfer
before updating the sender and receiver account balance in the database. For every
processing failure, an error message will be added instead. Because the request was sent by
the receiver side, the response will be generated to this user, containing the updated balance
that is encrypted using the user public key and a signature created by the server private key.

refresh.php

Figure 13. Communication on refresh

Online Mode Offline Micropayment

• Central trusted authority issues certificates
• Certificates trusted by nodes who pay with vouchers
• Vouchers later validated when users get back online

• Central trusted authority issues certificates
• Certificates trusted by nodes who pay with vouchers
• Vouchers later validated when users get back online

	Keyword-Based Mobile Application Sharing through Information-Centric Connectivity
	The Cloud is not enough
	What is KEBAPP – Contribution
	What applications does KEBAPP deal with – Design Space
	Where/When do we need KEBAPP (Target environments)
	How does KEBAPP work?
	PowerPoint Presentation
	Information-Centric Mobility
	Information Exposure through Names
	Application-Centric Naming (App IDs)
	Application-Centric Connectivity
	Information-Centric Forwarding
	Slide 13
	Feasibility – RouteFinder App
	Route Finder App
	Vision: An Edge ICN IoT Platform based on Information-Centric Connectivity
	How to implement KEBAPP?
	Slide 18
	BACKUP SLIDES
	Taxi Share App / Carpooling
	Online vs Offline Micropayment

