
A New Approach to Network Functions

Aurojit Panda

Current Approach to NFV

Current Approach to NFV

Firewall Cache NFs written by experts shipped as VM or container.

Current Approach to NFV

Firewall Cache NFs written by experts shipped as VM or container.

AVX-512

TSX

FTMB
FPGA

Stateless

static	int	_xbegin(void)	{	
		int	ret	=	_XBEGIN_STARTED;	
		asm	volatile(".byte	0xc7,0xf8	;	.long	0"	
				:	"+a"	(ret)	
				::	"memory");	
				return	ret;	
}	

static	void	_xend(void)	{	
			asm	volatile(".byte	0x0f,0x01,0xd5"	
			:::	“memory");	
}

NFs built to target hardware & software features.

Current Approach to NFV

Firewall Cache NFs written by experts shipped as VM or container.

vSwitch Firewall Cache Executed in VMs or containers for isolation.

AVX-512

TSX

FTMB
FPGA

Stateless

static	int	_xbegin(void)	{	
		int	ret	=	_XBEGIN_STARTED;	
		asm	volatile(".byte	0xc7,0xf8	;	.long	0"	
				:	"+a"	(ret)	
				::	"memory");	
				return	ret;	
}	

static	void	_xend(void)	{	
			asm	volatile(".byte	0x0f,0x01,0xd5"	
			:::	“memory");	
}

NFs built to target hardware & software features.

Current Approach to NFV

Firewall Cache NFs written by experts shipped as VM or container.

Core placement for performance.

vSwitch Firewall Cache Executed in VMs or containers for isolation.

AVX-512

TSX

FTMB
FPGA

Stateless

static	int	_xbegin(void)	{	
		int	ret	=	_XBEGIN_STARTED;	
		asm	volatile(".byte	0xc7,0xf8	;	.long	0"	
				:	"+a"	(ret)	
				::	"memory");	
				return	ret;	
}	

static	void	_xend(void)	{	
			asm	volatile(".byte	0x0f,0x01,0xd5"	
			:::	“memory");	
}

NFs built to target hardware & software features.

Problems with the Current Approach

• High overheads for isolation and chaining.

High Overheads for Isolation

�

�

��

��

��

��

��
��
��
��
��
��

�
��
�
��
��
��

�� ���������

High Overheads for Isolation

�

�

��

��

��

��

��
��
��
��
��
��

�
��
�
��
��
��

�� ���������
��� ��

High Overheads for Isolation

�

�

��

��

��

��

��
��
��
��
��
��

�
��
�
��
��
��

�� ���������
��� ��
���� ��

High Overheads for Isolation

�

�

��

��

��

��

��
��
��
��
��
��

�
��
�
��
��
��

�� ���������
��� ��
���� ��

���� ���������

High Overheads for Chaining

�

�

�

�

�

��

��

��

��

� � � � � � � �

��
��
��
��
��

�
��
�
��
��
��

����� ������

��������� ��

Problems with the Current Approach

• High overheads for isolation and chaining.

• Hard to write high-performance network functions.

Hard to Write New NFs
• NFs written in low-level languages, e.g., C or C++.

Hard to Write New NFs
• NFs written in low-level languages, e.g., C or C++.

• Make use of packet processing and I/O libraries like DPDK and netmap.

Hard to Write New NFs
• NFs written in low-level languages, e.g., C or C++.

• Make use of packet processing and I/O libraries like DPDK and netmap.

• Simplify batched I/O of packets, provide some common data structures.

Hard to Write New NFs
• NFs written in low-level languages, e.g., C or C++.

• Make use of packet processing and I/O libraries like DPDK and netmap.

• Simplify batched I/O of packets, provide some common data structures.

• Programmers responsible for meeting NF performance requirements.

Hard to Write New NFs
• NFs written in low-level languages, e.g., C or C++.

• Make use of packet processing and I/O libraries like DPDK and netmap.

• Simplify batched I/O of packets, provide some common data structures.

• Programmers responsible for meeting NF performance requirements.

• Write code to maintain access locality, prevent pipeline stalls, etc.

Hard to Write New NFs
• NFs written in low-level languages, e.g., C or C++.

• Make use of packet processing and I/O libraries like DPDK and netmap.

• Simplify batched I/O of packets, provide some common data structures.

• Programmers responsible for meeting NF performance requirements.

• Write code to maintain access locality, prevent pipeline stalls, etc.

• Result: Largely written by the same companies that built middleboxes.

Hard to Write New NFs
• NFs written in low-level languages, e.g., C or C++.

• Make use of packet processing and I/O libraries like DPDK and netmap.

• Simplify batched I/O of packets, provide some common data structures.

• Programmers responsible for meeting NF performance requirements.

• Write code to maintain access locality, prevent pipeline stalls, etc.

• Result: Largely written by the same companies that built middleboxes.

• Hard for carriers or new entrants to develop NFs, limiting innovation.

Problems with the Current Approach

• High overheads for isolation and chaining.

• Hard to write high-performance network functions.

• Hard to upgrade existing network functions to utilize new features.

Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:

Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:

• For example AVX, transactional memory (TSX), AES-NI, FPGAs, etc.

Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:

• For example AVX, transactional memory (TSX), AES-NI, FPGAs, etc.

• Rapidly evolving software architecture within which NFs are deployed:

Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:

• For example AVX, transactional memory (TSX), AES-NI, FPGAs, etc.

• Rapidly evolving software architecture within which NFs are deployed:

• State management for fault tolerance/scaling, enhanced scheduling, etc.

Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:

• For example AVX, transactional memory (TSX), AES-NI, FPGAs, etc.

• Rapidly evolving software architecture within which NFs are deployed:

• State management for fault tolerance/scaling, enhanced scheduling, etc.

• Feature availability dictated by deployment environment, use dictated by vendor.

Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:

• For example AVX, transactional memory (TSX), AES-NI, FPGAs, etc.

• Rapidly evolving software architecture within which NFs are deployed:

• State management for fault tolerance/scaling, enhanced scheduling, etc.

• Feature availability dictated by deployment environment, use dictated by vendor.

• Result: Delays before new features are used, increased cost for upgrades.

Problems with the Current Approach

• High overheads for isolation and chaining.

• Hard to write high-performance network functions.

• Hard to upgrade existing network functions to utilize new features.

NetBricks Addresses these Problems

What is NetBricks

• A new execution environment and programming framework for NFs.

What is NetBricks

• A new execution environment and programming framework for NFs.

• Up to an order of magnitude better NF performance.

What is NetBricks

• A new execution environment and programming framework for NFs.

• Up to an order of magnitude better NF performance.

• Open source project. Currently developed and maintained by

NetBricks Overview

NetBricks Overview
• Compile time type checks with minimal runtime checks for isolation.

• Same guarantees as existing approaches.

• Significantly lower overheads for isolation and chaining.

NetBricks Overview
• Compile time type checks with minimal runtime checks for isolation.

• Same guarantees as existing approaches.

• Significantly lower overheads for isolation and chaining.

• High-level dataflow model for expressing NF functionality.

NetBricks Overview
• Compile time type checks with minimal runtime checks for isolation.

• Same guarantees as existing approaches.

• Significantly lower overheads for isolation and chaining.

• High-level dataflow model for expressing NF functionality.

• NFs built using framework defined operators and user defined functions.

NetBricks Overview
• Compile time type checks with minimal runtime checks for isolation.

• Same guarantees as existing approaches.

• Significantly lower overheads for isolation and chaining.

• High-level dataflow model for expressing NF functionality.

• NFs built using framework defined operators and user defined functions.

• NF can be expressed simply and succinctly.

NetBricks Overview
• Compile time type checks with minimal runtime checks for isolation.

• Same guarantees as existing approaches.

• Significantly lower overheads for isolation and chaining.

• High-level dataflow model for expressing NF functionality.

• NFs built using framework defined operators and user defined functions.

• NF can be expressed simply and succinctly.

• Operator provided by framework, simplify NF upgrades.

NetBricks Overview
• Compile time type checks with minimal runtime checks for isolation.

• Same guarantees as existing approaches.

• Significantly lower overheads for isolation and chaining.

• High-level dataflow model for expressing NF functionality.

• NFs built using framework defined operators and user defined functions.

• NF can be expressed simply and succinctly.

• Operator provided by framework, simplify NF upgrades.

Execution
Environment

Programming
Framework

NetBricks: Execution Environment

Execution Environment Requirements

• Execution environment must satisfy three requirements

Execution Environment Requirements

• Execution environment must satisfy three requirements

• Performance: Process packets at line rate.

Execution Environment Requirements

• Execution environment must satisfy three requirements

• Performance: Process packets at line rate.

• Consolidation: Maximize number of NFs that can be consolidated.

Execution Environment Requirements

• Execution environment must satisfy three requirements

• Performance: Process packets at line rate.

• Consolidation: Maximize number of NFs that can be consolidated.

• Isolation: Ensure NFs do not affect each other

Isolation

Isolation
• Memory Isolation: Partition memory spatially between NFs.

Memory Address
NFs

Isolation
• Memory Isolation: Partition memory spatially between NFs.

• Packet Isolation: Partition packet memory temporally between NFs.

Memory Address

Ti
m

e
NFs

Isolation
• Memory Isolation: Partition memory spatially between NFs.

• Performance Isolation: One NF does not affect another’s performance.

• Packet Isolation: Partition packet memory temporally between NFs.

Isolation
• Memory Isolation: Partition memory spatially between NFs.

• Performance Isolation: One NF does not affect another’s performance.

• Packet Isolation: Partition packet memory temporally between NFs.

• Ongoing work: Partition last level cache.

Why Isolation?
• Enables consolidation in NFV deployments.

Why Isolation?
• Enables consolidation in NFV deployments.

• NFs can be run by different tenants, built by different vendors.

Why Isolation?
• Enables consolidation in NFV deployments.

• NFs can be run by different tenants, built by different vendors.

• Enables consolidation for NFs like SSL proxies that have secrets.

Why Isolation?
• Enables consolidation in NFV deployments.

• NFs can be run by different tenants, built by different vendors.

• Enables consolidation for NFs like SSL proxies that have secrets.

• Isolation is a building block for protecting secrets in applications.

Why Isolation?
• Enables consolidation in NFV deployments.

• NFs can be run by different tenants, built by different vendors.

• Enables consolidation for NFs like SSL proxies that have secrets.

• Isolation is a building block for protecting secrets in applications.

• Simplifies programming: don’t need to worry about other programs and NFs.

Why Isolation?
• Enables consolidation in NFV deployments.

• NFs can be run by different tenants, built by different vendors.

• Enables consolidation for NFs like SSL proxies that have secrets.

• Isolation is a building block for protecting secrets in applications.

• Simplifies programming: don’t need to worry about other programs and NFs.

• Lack of isolation between drivers is a major cause of crashes in OSes.

`

NIC NIC...

Memory Isolation

Performance

Packet IsolationvSwitch VM/ContainerVM/ContainerVM/Container

`

NIC NIC...

Memory Isolation

Performance

Packet IsolationvSwitch VM/ContainerVM/ContainerVM/Container

`

NIC NIC...

Memory Isolation✔

Performance

Packet IsolationvSwitch VM/ContainerVM/ContainerVM/Container

`

NIC NIC...

Memory Isolation✔

Performance

Packet IsolationvSwitch VM/ContainerVM/ContainerVM/Container

`

NIC NIC...

Memory Isolation✔

Performance

Packet IsolationvSwitch VM/ContainerVM/ContainerVM/Container

`

NIC NIC...

Memory Isolation✔

Performance

Packet IsolationvSwitch VM/ContainerVM/ContainerVM/Container

`

NIC NIC...

Memory Isolation✔

Performance

Packet IsolationvSwitch VM/ContainerVM/ContainerVM/Container
Copy

`

NIC NIC...

Memory Isolation✔

Performance

Packet IsolationvSwitch VM/ContainerVM/ContainerVM/Container
Copy

`

NIC NIC...

Memory Isolation✔

Performance

Packet IsolationvSwitch VM/ContainerVM/ContainerVM/Container
Copy

`

NIC NIC...

Memory Isolation✔

Performance

Packet Isolation✔
vSwitch VM/ContainerVM/ContainerVM/Container

Copy

`

NIC NIC...

Memory Isolation✔

Performance✗

Packet Isolation✔
vSwitch VM/ContainerVM/ContainerVM/Container

Copy

NetBricks: Low Overhead Isolation

�

�

��

��

��

��

��
��
��
��
��
��

�
��
�
��
��
��

�� ���������
���������
��� ��
���� ��

���� ���������

NetBricks: Key Insight

• Runtime mechanisms too expensive for NFV workloads.

NetBricks: Key Insight

• Runtime mechanisms too expensive for NFV workloads.

• Process a packet approximately every 100ns (10 MPPS) or faster.

NetBricks: Key Insight

• Runtime mechanisms too expensive for NFV workloads.

• Process a packet approximately every 100ns (10 MPPS) or faster.

• Must rely on static compile-time checks for isolation.

Memory Isolation at Compile Time

• Types and runtime checks can provide memory isolation within a process.

Memory Isolation at Compile Time

• Types and runtime checks can provide memory isolation within a process.

• Check isolation almost entirely at compile time, limited runtime overhead.

Memory Isolation at Compile Time

• Types and runtime checks can provide memory isolation within a process.

• Check isolation almost entirely at compile time, limited runtime overhead.

• Built on Rust - type checks, bound checks, no garbage collection.

Memory Isolation at Compile Time

• Types and runtime checks can provide memory isolation within a process.

• Check isolation almost entirely at compile time, limited runtime overhead.

• Built on Rust - type checks, bound checks, no garbage collection.

• Framework designed to meet the rest of the memory isolation requirements.

Approaches to Packet Isolation

• Packets are passed between network functions - memory isolation insufficient.

• Existing approaches convert this temporal problem to a spatial one.

• Copy packets from one packet space to another.

NF A NF B

Packet Copy

Approaches to Packet Isolation

• Packets are passed between network functions - memory isolation insufficient.

• Existing approaches convert this temporal problem to a spatial one.

• Copy packets from one packet space to another.

NF A NF B

Packet Copy

Approaches to Packet Isolation

• Packets are passed between network functions - memory isolation insufficient.

• Existing approaches convert this temporal problem to a spatial one.

• Copy packets from one packet space to another.

NF A NF B

Packet PacketCopy

Linear Types: Packet Isolation at Compile Time

• Solution: Use linear types (1990s) for isolation.

Linear Types: Packet Isolation at Compile Time

• Solution: Use linear types (1990s) for isolation.

• Syntax marks argument that are moved.
fn consume(a: Packet) {
 // Work with packet.
}

Linear Types: Packet Isolation at Compile Time

• Solution: Use linear types (1990s) for isolation.

• Syntax marks argument that are moved.

• Argument moved during calls.

fn consume(a: Packet) {
 // Work with packet.
}

// pkt is a packet
consume(pkt);

Linear Types: Packet Isolation at Compile Time

• Solution: Use linear types (1990s) for isolation.

• Syntax marks argument that are moved.

• Argument moved during calls.

• Ownership is transferred to callee.

fn consume(a: Packet) {
 // Work with packet.
}

// pkt is a packet
consume(pkt);

Linear Types: Packet Isolation at Compile Time

• Solution: Use linear types (1990s) for isolation.

• Syntax marks argument that are moved.

• Argument moved during calls.

• Ownership is transferred to callee.

• Moved variables can not be reused.

fn consume(a: Packet) {
 // Work with packet.
}

// pkt is a packet
consume(pkt);

pkt.set_length(200);

NetBricks: Packet Isolation

NF A NF B

Packet

NetBricks: Packet Isolation

NF A NF B

Packet

NetBricks: Packet Isolation

NF A NF B

Packet

NetBricks: Packet Isolation

NetBricks: Packet Isolation

• Linear types implemented by Rust for concurrency.

NetBricks: Packet Isolation

• Linear types implemented by Rust for concurrency.

• NetBricks operators consumes packet reference.

NetBricks: Packet Isolation

• Linear types implemented by Rust for concurrency.

• NetBricks operators consumes packet reference.

• API is designed so that safe code can never learn packet buffer address.

NetBricks: Packet Isolation

• Linear types implemented by Rust for concurrency.

• NetBricks operators consumes packet reference.

• API is designed so that safe code can never learn packet buffer address.

• Assuming compiler is sound - packet isolation is guaranteed.

NetBricks Runtime Architecture

NF A

NF B

NF C

NF D

NF X

DPDK Poll for I/O

NICs

NF Y

NF Z

Single Process Space

Scheduler

NetBricks Runtime Architecture

NF A

NF B

NF C

NF D

NF X

DPDK Poll for I/O

NICs

NF Y

NF Z

Single Process Space

DPDK: Fast packet I/O.
Scheduler

NetBricks Runtime Architecture

NF A

NF B

NF C

NF D

NF X

DPDK Poll for I/O

NICs

NF Y

NF Z

Single Process Space

NF Chains: Units of scheduling

Scheduler

NetBricks Runtime Architecture

NF A

NF B

NF C

NF D

NF X

DPDK Poll for I/O

NICs

Function
Call

NF Y

NF Z

Single Process Space

Scheduler

NetBricks Runtime Architecture

NF X

DPDK Poll for I/O

NICs

NF Y

NF Z

Single Process Space

Scheduler

Run
to
Completion
Scheduling

NF A

NF B

NF C

NF D
-Do not preempt NF chain.

NetBricks Runtime Architecture

NF X

DPDK Poll for I/O

NICs

NF Y

NF Z

Single Process Space

Scheduler

Run
to
Completion
Scheduling

NF A

NF B

NF C

NF D
-Do not preempt NF chain.

-Reduces number of packets in-flight.

NetBricks Runtime Architecture

NF X

DPDK Poll for I/O

NICs

NF Y

NF Z

Single Process Space

Scheduler

Run
to
Completion
Scheduling

NF A

NF B

NF C

NF D
-Do not preempt NF chain.

-Reduces number of packets in-flight.

-Reduces working set size.

NetBricks Runtime Architecture

NF X

DPDK Poll for I/O

NICs

NF Y

NF Z

Single Process Space

Scheduler

Run
to
Completion
Scheduling

NF A

NF B

NF C

NF D
-Do not preempt NF chain.

-Reduces number of packets in-flight.

-Reduces working set size.

-Preemption points added using queues

Benefits of Software Isolation

• Provides low overhead memory and packet isolation.

Benefits of Software Isolation

• Provides low overhead memory and packet isolation.

• Improved consolidation: multiple NFs can share a core.

Benefits of Software Isolation

• Provides low overhead memory and packet isolation.

• Improved consolidation: multiple NFs can share a core.

• Context switch (~1µs) vs function call to NF (~ few cycles = few ns).

Benefits of Software Isolation

• Provides low overhead memory and packet isolation.

• Improved consolidation: multiple NFs can share a core.

• Context switch (~1µs) vs function call to NF (~ few cycles = few ns).

• Reduce memory and cache pressure.

Benefits of Software Isolation

• Provides low overhead memory and packet isolation.

• Improved consolidation: multiple NFs can share a core.

• Context switch (~1µs) vs function call to NF (~ few cycles = few ns).

• Reduce memory and cache pressure.

• Zero copy I/O => do not need to copy packets around.

Evaluation Setup

vSwitch NF1 NF2

VM/Container

Evaluation Setup

vSwitch NF1 NF2 NF1
NF2

VM/Container NetBricks

Evaluation Setup

vSwitch NF1 NF2 NF1
NF2

NF1
NF2

NF1
NF2

VM/Container NetBricks NetBricks Multicore

Evaluation Setup

vSwitch NF1 NF2 NF1
NF2

NF1
NF2

NF1
NF2

VM/Container NetBricks NetBricks Multicore

NetBricks: More Efficient

�

�

��

��

��

��

��

��

� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��

�
��
�
��
��
��

���������� ������ ��� ������

��������� �� �����
��������� �� �����

���� ��������� �� �����
��� ��������� �� �����

���� �� �� �����
��� �� �� �����

NetBricks: More Efficient

�

�

��

��

��

��

��

��

� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��

�
��
�
��
��
��

���������� ������ ��� ������

��������� �� �����
��������� �� �����

���� ��������� �� �����
��� ��������� �� �����

���� �� �� �����
��� �� �� �����

3.7x

NetBricks: More Efficient

�

�

��

��

��

��

��

��

� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��

�
��
�
��
��
��

���������� ������ ��� ������

��������� �� �����
��������� �� �����

���� ��������� �� �����
��� ��������� �� �����

���� �� �� �����
��� �� �� �����

3.7x

3.53x

Scaling with Chain Length

�

�

��

��

��

��

��

� � � � � � � �

��
��
��
��
��

�
��
�
��
��
��

����� ������

��������� ���������
���������

���������
��

Scaling with Chain Length

�

�

��

��

��

��

��

� � � � � � � �

��
��
��
��
��

�
��
�
��
��
��

����� ������

��������� ���������
���������

���������
��

1.5x

Scaling with Chain Length

�

�

��

��

��

��

��

� � � � � � � �

��
��
��
��
��

�
��
�
��
��
��

����� ������

��������� ���������
���������

���������
��

1.5x

9.3x

Effect of Increasing Packet Size

�

�

��

��

��

��

��

�� ��� ��� ��� ��� ���� ���� ����

��
��
��
��
��

�
��
�
��
��
��

������ ����

��������� ���������
���������

���������
��

Effect of Increasing Packet Size

�

�

��

��

��

��

��

�� ��� ��� ��� ��� ���� ���� ����

��
��
��
��
��

�
��
�
��
��
��

������ ����

��������� ���������
���������

���������
��

Median sized packets

Effect of Increasing Packet Size

�

�

��

��

��

��

��

�� ��� ��� ��� ��� ���� ���� ����

��
��
��
��
��

�
��
�
��
��
��

������ ����

��������� ���������
���������

���������
��

Median sized packets6x

Effect of Increasing Packet Size

�

�

��

��

��

��

��

�� ��� ��� ��� ��� ���� ���� ����

��
��
��
��
��

�
��
�
��
��
��

������ ����

��������� ���������
���������

���������
��

Median sized packets6x

1.42x

NetBricks: Programming Environment

NetBricks Approach
• Write NFs using a compact set of abstractions provided by the framework.

NetBricks Approach
• Write NFs using a compact set of abstractions provided by the framework.

• Safe mechanisms whose performance is comparable to native code.

NetBricks Approach
• Write NFs using a compact set of abstractions provided by the framework.

• Safe mechanisms whose performance is comparable to native code.

• Abstractions implement micro-optimizations to achieve performance.

NetBricks Approach
• Write NFs using a compact set of abstractions provided by the framework.

• Safe mechanisms whose performance is comparable to native code.

• Abstractions implement micro-optimizations to achieve performance.

• User defined functions (UDFs) provide flexibility.

NetBricks Approach
• Write NFs using a compact set of abstractions provided by the framework.

• Safe mechanisms whose performance is comparable to native code.

• Abstractions implement micro-optimizations to achieve performance.

• User defined functions (UDFs) provide flexibility.

• Insight: customization is largely orthogonal to performance

NetBricks Approach
• Write NFs using a compact set of abstractions provided by the framework.

• Safe mechanisms whose performance is comparable to native code.

• Abstractions implement micro-optimizations to achieve performance.

• User defined functions (UDFs) provide flexibility.

• Insight: customization is largely orthogonal to performance

• Framework can implement global optimization.

Abstractions
Packet Processing

Parse/Deparse
Transform
Filter

Byte Stream

Window

Packetize

Control Flow
Group By
Shuffle
Merge

State

Lookup Tables

LPM Tables

Abstractions
Packet Processing

Parse/Deparse
Transform
Filter

Byte Stream

Window

Packetize

Control Flow
Group By
Shuffle
Merge

State

UDF
UDF

Header

UDF

UDF

UDF
UDF

Lookup Tables

LPM Tables

Consistency

Abstractions and UDFs

...

.parse::<MacHeader>()

.parse::<IpHeader>()

.parse::<TcpHeader>()

.filter(|pkt| {

 f(pkt.header().src_port())

 })

Abstractions and UDFs

...

.parse::<MacHeader>()

.parse::<IpHeader>()

.parse::<TcpHeader>()

.filter(|pkt| {

 f(pkt.header().src_port())

 })

MAC Header

Abstractions and UDFs

...

.parse::<MacHeader>()

.parse::<IpHeader>()

.parse::<TcpHeader>()

.filter(|pkt| {

 f(pkt.header().src_port())

 })

MAC Header

IP Header

Abstractions and UDFs

...

.parse::<MacHeader>()

.parse::<IpHeader>()

.parse::<TcpHeader>()

.filter(|pkt| {

 f(pkt.header().src_port())

 })

MAC Header

IP Header

TCP Header

Abstractions and UDFs

...

.parse::<MacHeader>()

.parse::<IpHeader>()

.parse::<TcpHeader>()

.filter(|pkt| {

 f(pkt.header().src_port())

 })

MAC Header

IP Header

TCP Header

Example NF: Maglev
• Maglev: Load balancer from Google (NSDI’16).

Example NF: Maglev
• Maglev: Load balancer from Google (NSDI’16).

• Main contribution: a novel consistent hashing algorithm.

Example NF: Maglev
• Maglev: Load balancer from Google (NSDI’16).

• Main contribution: a novel consistent hashing algorithm.

• Most of the work in common optimization: batching, scaling cross core.

Example NF: Maglev
• Maglev: Load balancer from Google (NSDI’16).

• Main contribution: a novel consistent hashing algorithm.

• Most of the work in common optimization: batching, scaling cross core.

• NetBricks implementation: 105 lines, 2 hours of time.

Example NF: Maglev
• Maglev: Load balancer from Google (NSDI’16).

• Main contribution: a novel consistent hashing algorithm.

• Most of the work in common optimization: batching, scaling cross core.

• NetBricks implementation: 105 lines, 2 hours of time.

• NetBricks performance (1 core): 9.2 MPPS

Example NF: Maglev
• Maglev: Load balancer from Google (NSDI’16).

• Main contribution: a novel consistent hashing algorithm.

• Most of the work in common optimization: batching, scaling cross core.

• NetBricks implementation: 105 lines, 2 hours of time.

• NetBricks performance (1 core): 9.2 MPPS

• Reported: 2.6 MPPS

Example NF: Evolved Packet Core

• EPC: A common NF used in cellular data processing.

Example NF: Evolved Packet Core

• EPC: A common NF used in cellular data processing.

• Made by collaborators at Berkeley - changes EPC architecture.

Example NF: Evolved Packet Core

• EPC: A common NF used in cellular data processing.

• Made by collaborators at Berkeley - changes EPC architecture.

• Approximately 2,054 lines of code vs 80,000 for OpenAirInterface.

Example NF: Evolved Packet Core

• EPC: A common NF used in cellular data processing.

• Made by collaborators at Berkeley - changes EPC architecture.

• Approximately 2,054 lines of code vs 80,000 for OpenAirInterface.

• 10x better performance than OpenAirInterface.

Example NF: Evolved Packet Core

• EPC: A common NF used in cellular data processing.

• Made by collaborators at Berkeley - changes EPC architecture.

• Approximately 2,054 lines of code vs 80,000 for OpenAirInterface.

• 10x better performance than OpenAirInterface.

• More than 5x better than commercial EPCs based on DPDK.

Upgrading NFs
through abstractions

Upgrading NFs
through abstractions

Warning: Future work ahead.

Abstractions Enable Upgrades
• Assumed to be the most complex part of the code.

Abstractions Enable Upgrades
• Assumed to be the most complex part of the code.

• Developed and provided by the framework not by NF developer.

Abstractions Enable Upgrades
• Assumed to be the most complex part of the code.

• Developed and provided by the framework not by NF developer.

• Upgrade strategy: Implement multiple versions of each abstraction.

Abstractions Enable Upgrades
• Assumed to be the most complex part of the code.

• Developed and provided by the framework not by NF developer.

• Upgrade strategy: Implement multiple versions of each abstraction.

• Each version targets specific hardware feature or software architecture.

Abstractions Enable Upgrades
• Assumed to be the most complex part of the code.

• Developed and provided by the framework not by NF developer.

• Upgrade strategy: Implement multiple versions of each abstraction.

• Each version targets specific hardware feature or software architecture.

• Choose which version to use at deployment time.

Abstractions Enable Upgrades
• Assumed to be the most complex part of the code.

• Developed and provided by the framework not by NF developer.

• Upgrade strategy: Implement multiple versions of each abstraction.

• Each version targets specific hardware feature or software architecture.

• Choose which version to use at deployment time.

• Choice depends on what is supported, and resource scheduling.

Upgrading Abstractions: Stateless NFs
Lookup Table (Current)

Upgrading Abstractions: Stateless NFs
Lookup Table (Current)

...

Abstraction
backed
by local
memory

Upgrading Abstractions: Stateless NFs
Lookup Table (Current)

...

Abstraction
backed
by local
memory

Used by UDFs
in other operators

Upgrading Abstractions: Stateless NFs
Lookup Table (Current)

...

Abstraction
backed
by local
memory

Used by UDFs
in other operators

Adopting Sateless Abstraction

Upgrading Abstractions: Stateless NFs
Lookup Table (Current)

...

Abstraction
backed
by local
memory

Used by UDFs
in other operators

Adopting Sateless Abstraction

Abstraction
backed
by remote
KV-store

Upgrading Abstractions: Stateless NFs
Lookup Table (Current)

...

Abstraction
backed
by local
memory

Used by UDFs
in other operators

Adopting Sateless Abstraction

Abstraction
backed
by remote
KV-store

UDFs remain
unchanged.

Upgrading Abstractions: Stateless NFs
Adopting Stateless and Caching

UDFs remain
unchanged.

Use consistency
requirements to
implement
local caching.

...

Adopting Sateless Abstraction

Abstraction
backed
by remote
KV-store

UDFs remain
unchanged.

Upgrading Abstractions: Stateless NFs
Adopting Stateless and Caching

UDFs remain
unchanged.

Use consistency
requirements to
implement
local caching.

...

Adopting Sateless Abstraction

Abstraction
backed
by remote
KV-store

UDFs remain
unchanged.

Adopting new features requires no changes to NF code.

Becomes a policy decision made by deployment.

Upgrading Abstractions: Shuffles as RSS
Shuffle Abstraction

Core 0

Core 1

Core 2

Core 3

Sh
uf

fle

Partition
traffic
across
cores

• For many UDFs can implement on NIC.

• Using receive side scaling (RSS).

• RSS can be used when shuffling by

• TCP 5-tuple

• Masked parts of the IP header.

• Currently implemented.

• Significant performance benefits.

Upgrading Abstractions: Shuffles as RSS
Shuffle Abstraction

Core 0

Core 1

Core 2

Core 3

UDF dictates
how traffic is
split.

• For many UDFs can implement on NIC.

• Using receive side scaling (RSS).

• RSS can be used when shuffling by

• TCP 5-tuple

• Masked parts of the IP header.

• Currently implemented.

• Significant performance benefits.

Upgrading Abstractions: Challenges

• Compilations: How to compile UDFs on offload hardware?

Upgrading Abstractions: Challenges

• Compilations: How to compile UDFs on offload hardware?

• Everything is compiled through LLVM. Supports large number of backends.

Upgrading Abstractions: Challenges

• Compilations: How to compile UDFs on offload hardware?

• Everything is compiled through LLVM. Supports large number of backends.

• Expectation: Get UDFs in LLVM IR form and retarget as appropriate.

Upgrading Abstractions: Challenges

• Compilations: How to compile UDFs on offload hardware?

• Everything is compiled through LLVM. Supports large number of backends.

• Expectation: Get UDFs in LLVM IR form and retarget as appropriate.

• Using Offloads Across NFs: How to share resources or compose, etc.

Upgrading Abstractions: Challenges

• Compilations: How to compile UDFs on offload hardware?

• Everything is compiled through LLVM. Supports large number of backends.

• Expectation: Get UDFs in LLVM IR form and retarget as appropriate.

• Using Offloads Across NFs: How to share resources or compose, etc.

• Example: How to shuffle in chained NFs? Who gets to use an FPGA?

Upgrading Abstractions: Challenges

• Compilations: How to compile UDFs on offload hardware?

• Everything is compiled through LLVM. Supports large number of backends.

• Expectation: Get UDFs in LLVM IR form and retarget as appropriate.

• Using Offloads Across NFs: How to share resources or compose, etc.

• Example: How to shuffle in chained NFs? Who gets to use an FPGA?

• Relying on resource allocation policy to help with these questions.

Conclusion
• NetBricks is a new NF development and execution platform.

http://netbricks.io/

Conclusion
• NetBricks is a new NF development and execution platform.

• Addresses three challenges in today’s environments.

http://netbricks.io/

Conclusion
• NetBricks is a new NF development and execution platform.

• Addresses three challenges in today’s environments.

• Providing isolation without overheads.

http://netbricks.io/

Conclusion
• NetBricks is a new NF development and execution platform.

• Addresses three challenges in today’s environments.

• Providing isolation without overheads.

• Simplifying NF development.

http://netbricks.io/

Conclusion
• NetBricks is a new NF development and execution platform.

• Addresses three challenges in today’s environments.

• Providing isolation without overheads.

• Simplifying NF development.

• Enabling NFs to take advantage of hardware and software improvements.

http://netbricks.io/

Conclusion
• NetBricks is a new NF development and execution platform.

• Addresses three challenges in today’s environments.

• Providing isolation without overheads.

• Simplifying NF development.

• Enabling NFs to take advantage of hardware and software improvements.

• NetBricks is open sources, available at http://netbricks.io/

http://netbricks.io/

