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Current Approach to NFV

Firewall Cache NFs written by experts shipped as VM or container.

Core placement for performance.

vSwitch Firewall Cache Executed in VMs or containers for isolation.

AVX-512

TSX

FTMB
FPGA

Stateless

static	int	_xbegin(void)	{	
		int	ret	=	_XBEGIN_STARTED;	
		asm	volatile(".byte	0xc7,0xf8	;	.long	0"	
				:	"+a"	(ret)	
				::	"memory");	
				return	ret;	
}	

static	void	_xend(void)	{	
			asm	volatile(".byte	0x0f,0x01,0xd5"	
			:::	“memory");	
}

NFs built to target hardware & software features.
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• High overheads for isolation and chaining. 
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High Overheads for Chaining
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Problems with the Current Approach

• High overheads for isolation and chaining. 

• Hard to write high-performance network functions. 
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• Programmers responsible for meeting NF performance requirements.

• Write code to maintain access locality, prevent pipeline stalls, etc.

• Result: Largely written by the same companies that built middleboxes.

• Hard for carriers or new entrants to develop NFs, limiting innovation.



Problems with the Current Approach

• High overheads for isolation and chaining. 

• Hard to write high-performance network functions. 

• Hard to upgrade existing network functions to utilize new features.



Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:



Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:

• For example AVX, transactional memory (TSX), AES-NI, FPGAs, etc.



Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:

• For example AVX, transactional memory (TSX), AES-NI, FPGAs, etc.

• Rapidly evolving software architecture within which NFs are deployed:



Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:

• For example AVX, transactional memory (TSX), AES-NI, FPGAs, etc.

• Rapidly evolving software architecture within which NFs are deployed:

• State management for fault tolerance/scaling, enhanced scheduling, etc.



Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:

• For example AVX, transactional memory (TSX), AES-NI, FPGAs, etc.

• Rapidly evolving software architecture within which NFs are deployed:

• State management for fault tolerance/scaling, enhanced scheduling, etc.

• Feature availability dictated by deployment environment, use dictated by vendor.



Hard to Upgrade Existing NFs
• Rapidly evolving set of hardware accelerators including:

• For example AVX, transactional memory (TSX), AES-NI, FPGAs, etc.

• Rapidly evolving software architecture within which NFs are deployed:

• State management for fault tolerance/scaling, enhanced scheduling, etc.

• Feature availability dictated by deployment environment, use dictated by vendor.

• Result: Delays before new features are used, increased cost for upgrades.



Problems with the Current Approach

• High overheads for isolation and chaining. 

• Hard to write high-performance network functions. 

• Hard to upgrade existing network functions to utilize new features.
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What is NetBricks

• A new execution environment and programming framework for NFs.

• Up to an order of magnitude better NF performance.

• Open source project. Currently developed and maintained by 
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• Compile time type checks with minimal runtime checks for isolation. 

• Same guarantees as existing approaches. 

• Significantly lower overheads for isolation and chaining.

• High-level dataflow model for expressing NF functionality.

• NFs built using framework defined operators and user defined functions.

• NF can be expressed simply and succinctly.

• Operator provided by framework, simplify NF upgrades.

Execution 
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• Execution environment must satisfy three requirements

• Performance: Process packets at line rate.

• Consolidation: Maximize number of NFs that can be consolidated. 

• Isolation: Ensure NFs do not affect each other
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Isolation
• Memory Isolation: Partition memory spatially between NFs.

• Performance Isolation: One NF does not affect another’s performance.

• Packet Isolation: Partition packet memory temporally between NFs.

• Ongoing work: Partition last level cache.
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Why Isolation?
• Enables consolidation in NFV deployments.

• NFs can be run by different tenants, built by different vendors.

• Enables consolidation for NFs like SSL proxies that have secrets.

• Isolation is a building block for protecting secrets in applications.

• Simplifies programming: don’t need to worry about other programs and NFs.

• Lack of isolation between drivers is a major cause of crashes in OSes.
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• Runtime mechanisms too expensive for NFV workloads.

• Process a packet approximately every 100ns (10 MPPS) or faster.

• Must rely on static compile-time checks for isolation.
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Memory Isolation at Compile Time

• Types and runtime checks can provide memory isolation within a process.

• Check isolation almost entirely at compile time, limited runtime overhead.

• Built on Rust - type checks, bound checks, no garbage collection.

• Framework designed to meet the rest of the memory isolation requirements.
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• Packets are passed between network functions - memory isolation insufficient. 

• Existing approaches convert this temporal problem to a spatial one. 

• Copy packets from one packet space to another.

NF A NF B

Packet PacketCopy
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Linear Types: Packet Isolation at Compile Time

• Solution: Use linear types (1990s) for isolation.

• Syntax marks argument that are moved.

• Argument moved during calls.

• Ownership is transferred to callee.

• Moved variables can not be reused.

fn consume(a: Packet) {
    // Work with packet.
}

// pkt is a packet
consume(pkt);

pkt.set_length(200);
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NetBricks: Packet Isolation

• Linear types implemented by Rust for concurrency.

• NetBricks operators consumes packet reference.

• API is designed so that safe code can never learn packet buffer address.

• Assuming compiler is sound - packet isolation is guaranteed.
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NetBricks Runtime Architecture

NF X

DPDK Poll for I/O

NICs

NF Y

NF Z

Single Process Space

Scheduler

Run 
to 
Completion 
Scheduling

NF A

NF B

NF C

NF D
-Do not preempt NF chain.

-Reduces number of packets in-flight.

-Reduces working set size.

-Preemption points added using queues
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Benefits of Software Isolation

• Provides low overhead memory and packet isolation.

• Improved consolidation: multiple NFs can share a core.

• Context switch (~1µs) vs function call to NF (~ few cycles = few ns).

• Reduce memory and cache pressure.

• Zero copy I/O => do not need to copy packets around.
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NetBricks: Programming Environment
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NetBricks Approach
• Write NFs using a compact set of abstractions provided by the framework.

• Safe mechanisms whose performance is comparable to native code. 

• Abstractions implement micro-optimizations to achieve performance.

• User defined functions (UDFs) provide flexibility.

• Insight: customization is largely orthogonal to performance

• Framework can implement global optimization.
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Abstractions
Packet Processing

Parse/Deparse
Transform
Filter

Byte Stream

Window

Packetize

Control Flow
Group By
Shuffle
Merge

State

UDF
UDF

Header

UDF

UDF

UDF
UDF

Lookup Tables

LPM Tables

Consistency
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Example NF: Maglev
• Maglev: Load balancer from Google (NSDI’16).

• Main contribution: a novel consistent hashing algorithm.

• Most of the work in common optimization: batching, scaling cross core.

• NetBricks implementation: 105 lines, 2 hours of time.

• NetBricks performance (1 core): 9.2 MPPS

• Reported: 2.6 MPPS
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Example NF: Evolved Packet Core

• EPC: A common NF used in cellular data processing.

• Made by collaborators at Berkeley - changes EPC architecture.

• Approximately 2,054 lines of code vs 80,000 for OpenAirInterface.

• 10x better performance than OpenAirInterface.

• More than 5x better than commercial EPCs based on DPDK.



Upgrading NFs  
through abstractions



Upgrading NFs  
through abstractions

Warning: Future work ahead.
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Abstractions Enable Upgrades
• Assumed to be the most complex part of the code.

• Developed and provided by the framework not by NF developer.

• Upgrade strategy: Implement multiple versions of each abstraction.

• Each version targets specific hardware feature or software architecture.

• Choose which version to use at deployment time.

• Choice depends on what is supported, and resource scheduling.



Upgrading Abstractions: Stateless NFs
Lookup Table (Current)



Upgrading Abstractions: Stateless NFs
Lookup Table (Current)

...

Abstraction 
backed 
by local 
memory



Upgrading Abstractions: Stateless NFs
Lookup Table (Current)

...

Abstraction 
backed 
by local 
memory

Used by UDFs 
in other operators



Upgrading Abstractions: Stateless NFs
Lookup Table (Current)

...

Abstraction 
backed 
by local 
memory

Used by UDFs 
in other operators

Adopting Sateless Abstraction



Upgrading Abstractions: Stateless NFs
Lookup Table (Current)

...

Abstraction 
backed 
by local 
memory

Used by UDFs 
in other operators

Adopting Sateless Abstraction

Abstraction 
backed 
by remote 
KV-store



Upgrading Abstractions: Stateless NFs
Lookup Table (Current)

...

Abstraction 
backed 
by local 
memory

Used by UDFs 
in other operators

Adopting Sateless Abstraction

Abstraction 
backed 
by remote 
KV-store

UDFs remain 
unchanged.



Upgrading Abstractions: Stateless NFs
Adopting Stateless and Caching

UDFs remain 
unchanged.

Use consistency 
requirements to 
implement 
local caching.

...

Adopting Sateless Abstraction

Abstraction 
backed 
by remote 
KV-store

UDFs remain 
unchanged.



Upgrading Abstractions: Stateless NFs
Adopting Stateless and Caching

UDFs remain 
unchanged.

Use consistency 
requirements to 
implement 
local caching.

...

Adopting Sateless Abstraction

Abstraction 
backed 
by remote 
KV-store

UDFs remain 
unchanged.

Adopting new features requires no changes to NF code. 

Becomes a policy decision made by deployment.
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Upgrading Abstractions: Shuffles as RSS
Shuffle Abstraction

Core 0

Core 1

Core 2

Core 3

UDF dictates 
how traffic is 
split.

• For many UDFs can implement on NIC. 

• Using receive side scaling (RSS). 

• RSS can be used when shuffling by 

• TCP 5-tuple 

• Masked parts of the IP header. 

• Currently implemented. 

• Significant performance benefits.
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Upgrading Abstractions: Challenges

• Compilations: How to compile UDFs on offload hardware?

• Everything is compiled through LLVM. Supports large number of backends.

• Expectation: Get UDFs in LLVM IR form and retarget as appropriate.

• Using Offloads Across NFs: How to share resources or compose, etc.

• Example: How to shuffle in chained NFs? Who gets to use an FPGA?

• Relying on resource allocation policy to help with these questions.
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Conclusion
• NetBricks is a new NF development and execution platform.

• Addresses three challenges in today’s environments.

• Providing isolation without overheads.

• Simplifying NF development.

• Enabling NFs to take advantage of hardware and software improvements.

• NetBricks is open sources, available at http://netbricks.io/

http://netbricks.io/

