
Building a better network through
disaggregation

Eric Keller

Networks Need Network Functions

Firewall

NAT Intrusion Prevention

Load balancer

To protect and manage the network traffic

Networks Need *Agile* Network Functions

To match the agility of today’s (cloud)
compute infrastructure

Data Center Infrastructure
Compute

NetworkStorage

Network Agility == Ability to move quickly and easy

Seamless Scalability

Failure Resiliency

Instant Deployment

Without Sacrificing Performance

Virtual Network Functions to the Rescue ?

Hardware Network Functions Software Network Functions
(Virtual Machines

or containers)

Same core architecture,
same fundamental limit in agility

The Challenge is with The State

• Firewall : connection tracking information

• Load balancer: mapping to back end server

• Intrusion Prevention: automata state

• NAT: mapping of internal to external addresses

Example Problem 1: Failure

Flow1

P3
P2

State

State
Redirect Traffic

P1

Lookup
fails!!!

Example Problem 2: Scaling In and Out

Flow1

State

State
Merge/Split

Traffic

Flow2

Flow3

Flow2Flow2
Flow1

Example Problem 3: Asymmetric / Multi-path

P1 syn

State

State P2 synack

Lookup fails!!!

Flow1Flow1 (syn)

Other Solutions

Industry Approaches to Deal with State

HA Pairs

• Doubles cost, limited scalability, unreliable [Jain2009]

Don’t use state

• e.g., Google Maglev
• (hash 5-tuple to select backend).

• Limited applications

BackupActive

Dealing with State: State Migration (for scaling)

Router Grafting [NSDI 2010],

Split Merge [NSDI 2013],

OpenNF [SIGCOMM 2014]

• When needed, migrate the relevant state

• Only handles pre-planned events

• High overhead to migrate state (e.g., 100 ms)

• Relies on flow affinity

Flow1

State

State

Flow2

Dealing with State: Check Pointing (for failure)

Pico Replication [SoCC 2013]

• Periodically checkpoint state
(only diffs, and only network state)

Limitations:

• Quick recovery from failure

• High packet latency
(can’t release packets until state check pointed)

Flow1

State

Backup
State

Flow2

Backup
State

Dealing with State: Deterministic Replay (for failure)

FTMB [SIGCOMM 2015]

• Log events so that upon failure we can re-play those
events to rebuild the state

• Use periodic check pointing to limit the replay time

• Improves packet latency

Limitation:

• Long recovery time (time since last check point)

Flow1

State

Log of
events

Flow2

What is the root of the problem?

… Appliance mentality

Maintaining the Tight Coupling
between State and Processing PROCESS

STATE

PROCESS

STATE

Stateless Network Functions

• Re-designed as a distributed system from the ground up.

• Decoupling the state from the processing

PROCESS

STATE

PROCESS
PROCESS

Benefits of Decoupling State from Processing

Traditional Network Function
e.g., Firewall

- Seamless elasticity
- No disruption in failure
- Doesn’t rely on flow affinity
- Centralized state (simpler to manage)

- High overhead to manage state
- Relies on flow affinity
- Hard to achieve both resiliency and

elasticity

Stateless Network Function
e.g., Stateless Firewall

PROCESS

STATE

PROCESS
PROCESS

PROCESS

STATE

PROCESS

STATE

Is this even possible?

We need to handle millions of packets per second

A Counter-Intuitive Proposal… But it is possible

Why we can do this:

• Common packet processing pipeline has a lookup stage
(so, per packet request to data store, but not lots of back and forth)

• Requests to data store are much smaller than packets
(so, scaling traffic rates does not result in same scaling of data store)

• Advances in low-latency technologies
(data stores, network I/O, etc.)

How State is Accessed

• Example for Load balancer

Available
Backend
Servers

Assigned
Backend
Server

Cluster ID
IP List

5-tuple
IP Address

1st Packet of flow
(Pick an available server)
• 1 Read from Available table,
• 1 Write to Assigned table

Every other Packet of flow
(look up assigned server)
• 1 Read from Assigned table

System Architecture
StatelessNF

Network Function Host

StatelessNF Architecture

State

Network
Function

Network
Function

Network
Function
Network
Function

Network Function Host

Monitor/
Manage

Data Store

Controller

SDN Switch

Traffic to network functions

OF Rules

Visualize/
Modify

Timeout
Manager

Data Store

State

Data Store
(RAMCloud)

Timeout
Manager

• Low latency, etc.

• Also needs (or could use) support for timers, atomic updates, queues

Network Function Instances

Network Function Host

Network
Function

Network
Function

Network
Function
Network
Function

Network Function Host

High-Performance Network I/O

e.g., DPDK, netmap

RX

Input Output

NIC 1
Thread 1

NIC 1

To remote data store

TX

Deployable Packet Processing Container

e.g., Docker

Pull

Input

Parse, Lookup, and Process

Output

NIC 1
Thread 1 Queue 1 Thread 2

NIC 1
Pipe 1

Pull Parse, Lookup, and ProcessNIC 2
Thread 3 Queue 2 Thread 4

NIC 2
Pipe 2

Pull Parse, Lookup, and ProcessNIC N
Thread Nx2-1 Queue N Thread Nx2

NIC N
Pipe N

To remote data store

Optimized Data Store Client Interface

e.g., Batching, Buffer Alloc

Buffer Pool
Data Store Client Interface

Pull

Input

Parse, Lookup, and Process

Output

NIC 1

Request Batching

Thread 1 Queue 1 Thread 2
NIC 1

Pipe 1

Pull Parse, Lookup, and ProcessNIC 2
Thread 3 Queue 2 Thread 4

NIC 2
Pipe 2

Pull Parse, Lookup, and ProcessNIC N
Thread Nx2-1 Queue N Thread Nx2

NIC N
Pipe N

NIC

To remote data store

Orchestration

• Failure handling – speculative failure detection (much faster reactivity)

• Scaling in and out – no need to worry about state when balancing traffic

Monitor/
Manage Controller

OF Rules

Network Function Host

Network
Function

Network
Function

Network
Function
Network
Function

Network Function Host

SDN Switch

Traffic to network functions

Implementation

Network Functions (NAT, Firewall, Load balancer)

• DPDK

• SR-IOV

• Docker

• Infiniband to Data store (DPDK since paper)

Data store

• RAMCloud (Redis since paper)

• Extending

Controller

• Extended FloodLight, basic policies for handling scaling and failure.
(complete re-write since paper)

StatelessNF System Evaluation

Evaluation

Goal: in this extreme case architecture, can we get
similar throughput and latency as other software

solutions,

but with better handling of resilience and failure?

Experiment Setup

Tests:

• Raw throughput, latency

• Handling failure

• Handling scaling in-out

Traffic
generation

Traffic
sink

Network
Function

Network
Function

Network
Function
Network
Function

Network Function Host

Network
Function

Network
Function

Network
Function
Network
Function

Network Function Host

Network Functions:

• Baseline Network Functions (state and
processing are coupled)

• Stateless Network Functions (state and
processing are decoupled)

Throughput

Enterprise Trace – Stateless
Roughly matches Baseline

Note: similar to systems which have added support for scaling or failure

Raw packets per second – lower
until about 256 byte packets

Latency

NAT (Firewall and Load balancer has slight less latencies)

100us

300us

Scaling In and Out

Handling Failure

Commercialization Effort

About

Eric KellerMurad Kablan

+ 5 Engineers, 1 BizDev/Marketing, 1 intern

Target Customers

• Initial: Managed Service Providers, Next: Cable / Telco

Managed hosting
21% CAGR

New
revenue
streams

Gain
more
customers

Reduce
risk

Improve
customer
satisfaction

Streamline
operations

Key Business Drivers:

“Building and running a network service is difficult and expensive”

Network as a Service

Ready to use

Automated via platform

Plug & play commodity

Hardware, pay per use

Automated and scalable

via platform

Seamless updates

without disruption

Anytime, on-demand

Virtualized Infrastructures

Lots of dev. effort

Support tickets handled

by network operator

Commodity hardware

with restrictive license pools

Quick, but complex to scale

Easy updates and scaling,

but with disruption

Once a year for new

license pools

Hardware Infrastructures

Slicing is hard

Support tickets handled by

network operator

Specialized hardware with long

delivery & deployment times

Extensive and time-consuming

Complex to update and scale

Once every three to five years

DESIGN

REQUEST

PURCHASING

CONFIG

FUNCTIONS

UPGRADE

Deployment

Internet

43

Prove Technology outside of Lab

PoC Pilot Full Deployment

Mechanism:
• Deploy in sandbox
• Setup for fake tenants
• Simulate traffic / events (failure)

Goal:
• Demonstrate ease of use
• Product functionality feedback

Exit Criteria:
• Pass initial tests of stability,

performance, and resilience
• Positive customer experience

Mechanism:
• Step1: Tapped real traffic.
• Step2: low-profile tenants.
• Simulate events (failure)

Goal:
• Quantify perf. and resilience
• Quantify value (cost savings)

Exit Criteria:
• Metrics meet expectations

Mechanism:
• Offer out as service to tenants.

Support:
• Support to initial customers

24/7.
• Frequent product updates

1 started, 1 committed, 2 in discussion, willing to bring on 2 more over next 12-18 months

From the Academic Paper to Product

Network Function Design

Data Store Client

API

Reduce interaction

Hide optimizations

Processing as graph of
fine or coarse functions

Near term: clean API, leverage ubiquity of DPDK

Easy to write NFs
(code is agnostic to opt.)

Standard Distributed System Issues

add

re-shard

failure

configcontrol

Consistency

Data store scaling

Transactions

Configuration

Platform

Main Controller
(e.g., OpenStack)

Stateless
Control

Stateless Service Other Service

ONAP, OpenStack, …

• Doesn’t (shouldn’t) matter to us

Public Cloud?

• Current impl. hindered by lack of
control in virtualization layer, and
network layer
• (e.g., lack of DPDK support, limitation on

tunneling, unpredictable network)

Specialized
control

Pool or resources
allocated to service

Conclusions and Future Work

• Networks need agile network functions
• Seamless scalability, failure resiliency, without sacrificing performance

• StatelessNF is a design from the ground up
• Zero loss scaling, zero loss fail-over

• Main potential drawback… performance, but in this extreme point:
• Throughput similar to other solutions
• 100-300us added latency (similar to other solutions)

• Future work: Evolve data store design for network functions

Thanks!

eric@bestateless.com

mailto:eric@bestateless.com

