
Stateless Reset
QUIC Interim 2017-06, Paris

Manifest Confusion

What is the purpose of a Stateless Reset?

What signals do we want endpoints to generate?

...and who do we want to have consume those signals?

What is the role of a middlebox in QUIC?

2

Signals Taxonomy

A simplistic taxonomy divides things into sender/receiver

end-to-end - most things

end-to-path - a bunch of implicit signals only

path-to-end - PMTU signals, ECN

One of these is not like the others:

there is only one connection, but multiple paths

3

Simple Migration

4

S

C

Handshake
happens on
one path

Simple Migration

5

S

C C>> migration >>

Handshake
happens on
one path

Any number of
paths might be

used in between

Simple Migration

6

S

C C C>> migration >> >> migration >>

Handshake
happens on
one path

Terminatio
n happens

on another

Any number of
paths might be

used in between

Limited Scope Stateless Reset

An end-to-end signal

Used only when a server (not a client) loses state

Terminates the connection

Not visible to middleboxes (?)

7

As originally designed, Public Reset is an end-to-end signal

… that leaks information to the path

Connection termination also means flow termination

Path elements have an incentive to look for and consume
these packets

Signal Leakage

8

A path element might act on a spoofed Stateless Reset

That could break a flow, even if the signal is not genuine

TCP RST is used for man-on-the-side DoS attacks

...it would be nice if QUIC weren’t similarly vulnerable

Acting on Partial Information

9

Solution Options

A (#20): Expose the verifier and have path elements validate

Problem: path elements won’t see the handshake always

Problem: they might only look at the packet type octet

B (Grease): Send lots of fake Stateless Resets

...with (B1) or without (B2) a publicly visible verifier

Problem: wastes bandwidth and effort

C (Hide): Make the Stateless Reset look like any other packet

10

Proposal: Remove the Leakage (Option C)

Send n during the handshake, encrypted

Stateless Reset looks like a regular packet

Contents are n plus random padding

Looks like ciphertext but won’t decrypt

Client compares packet to n if it doesn’t decrypt

Server generates n from a static key and connection ID

e.g., HKDF(Kstatic, connectionID || serverID, ‘reset’, L)

11

Wait!

12

The only signal the path gets is the handshake

...and that is only for the first path

For other paths, it’s either packets flowing or not

That means timers, and timers are terrible

Please, propose a separate, explicit end-to-path signal

What about the path?

13

https://tools.ietf.org/html/draft-trammell-plus-statefulness

