
Death of a Stream

Not Controversial (I Hope): Good Case

• Stream contains two channels in opposite direction
• Each side writes data

• STREAM frames

• …which gets read on the other side
• MAX_STREAM_DATA

• …and eventually reaches an orderly end
• FIN flag on last STREAM frame

write()

close()

read()

write()

close()read()

Abrupt Closure
RST_STREAM, STOP_SENDING, and all things not transferred to completion

Stream Abort, <= -04

• RST_STREAM has three effects:
• Announces that no new data will be sent nor old data retransmitted

• Includes final offset to sync flow control

• Announces that no new data will be read

• Solicits matching RST_STREAM
• Includes final offset to sync flow control

write() read()

write()

close()read()

abort()

Stream Abort, >= -05

• RST_STREAM announces that no new data will be sent nor old data
retransmitted
• Includes final offset to sync flow control

• STOP_SENDING announces that no new data will be read
• Solicits matching RST_STREAM

• …which includes final offset to sync flow control

write()

abort()

read()

write()

close()read()

abort()

Various people unhappy here

Liked Bidirectional Resets

• Half-reset state feels messy
• Shades of half-open TCP

connections

• Bidirectional reset is a common
pattern
• Why optimize for the uncommon

case?
• Old drafts special-cased

NO_ERROR for rare single-
direction close

Want Stop Sending in Application

• HTTP is the only known use-case

• Only exception to “transport
shouldn’t be resetting streams”
• #758, #485

• …other than connection
termination

• Only application knows which
streams can’t be reset safely

https://github.com/quicwg/base-drafts/issues/758
https://github.com/quicwg/base-drafts/issues/485

Toward a Unidirectional World

• RST_STREAM announces that no new data will be sent nor old data
retransmitted
• Includes final offset to sync flow control

• STOP_SENDING announces that no new data will be read
• Solicits matching RST_STREAM

• …which includes final offset to sync flow control

write() read()

write()

close()read()

abort()

abort()

Transport-Clean Streams (#758,#485)

• RST_STREAM cancels the stream in one direction
• But only when the application requests it!

• Application can define how to request closure if needed

• Possible risk: Deadlock
• Receiver application no longer cares, stops reading
• Transport stack stops updating flow control
• Sender gets blocked on flow control

• Delivery of application-layer signal needs to be reliable (i.e. different
stream)

write()

close()

read()

write()

read()

STOP_SENDING →

abort()

https://github.com/quicwg/base-drafts/issues/758
https://github.com/quicwg/base-drafts/issues/485

Some Options

• Should we rename them to CANCEL_WRITE and
CANCEL_READ?
• Might be clearer than a unidirectional RST

• Should there be a CANCEL_BOTH?
• Addresses the common case in a single frame

• Only applies to bidirectional

write()

abort()

read()

write()

close()read()

abort()

Stream Closure and Reliability
When is “closed” not “closed”? (#743)

https://github.com/quicwg/base-drafts/issues/743

Remember the Good Case?

• Stream contains two channels in opposite direction
• Each side writes data

• STREAM frames

• …which gets read on the other side
• MAX_STREAM_DATA

• …and eventually reaches an orderly end
• FIN flag on last STREAM frame

• Finally, the stream is closed

write()

close()

read()

write()

close()read()

The stream is “closed” when…

• Application has delivered all data to transport

• Sending transport has sent packets containing all data

• Receiving transport has received packets containing all data

• Receiving application has read all data from the receiving
transport

• Receiving application has generated ACKs for packets
containing all data

• Sending transport has received ACKs for packets containing all
data

• Receiver knows that sender knows all data has been delivered

• Sender knows that receiver knows that sender knows…

“all data” “RST_STREAM”

Proposal

Idle Open
Kinda-sorta-

closed
Really-
closed

…with better names TBD

But which is which?

• Application has delivered all data to transport

• Sending transport has sent packets containing all data

• Receiving transport has received packets containing all data

• Receiving application has read all data from the receiving
transport

• Receiving application has generated ACKs for packets
containing all data

• Sending transport has received ACKs for packets containing all
data

• Receiver knows that sender knows all data has been delivered

• Sender knows that receiver knows that sender knows…

