
Death of a Stream

Not Controversial (I Hope): Good Case

• Stream contains two channels in opposite direction
• Each side writes data

• STREAM frames

• …which gets read on the other side
• MAX_STREAM_DATA

• …and eventually reaches an orderly end
• FIN flag on last STREAM frame

write()

close()

read()

write()

close()read()

Abrupt Closure
RST_STREAM, STOP_SENDING, and all things not transferred to completion

Stream Abort, <= -04

• RST_STREAM has three effects:
• Announces that no new data will be sent nor old data retransmitted

• Includes final offset to sync flow control

• Announces that no new data will be read

• Solicits matching RST_STREAM
• Includes final offset to sync flow control

write() read()

write()

close()read()

abort()

Stream Abort, >= -05

• RST_STREAM announces that no new data will be sent nor old data
retransmitted
• Includes final offset to sync flow control

• STOP_SENDING announces that no new data will be read
• Solicits matching RST_STREAM

• …which includes final offset to sync flow control

write()

abort()

read()

write()

close()read()

abort()

Various people unhappy here

Liked Bidirectional Resets

• Bidirectional reset is a common
pattern
• Why optimize for the uncommon

case?
• Old drafts special-cased

NO_ERROR for rare single-
direction close

• Half-reset state feels messy
• Shades of half-open TCP

connections

Want Stop Sending in Application

• HTTP is the only known use-case

• Only exception to “transport
shouldn’t be resetting streams”
• #758, #485

• …other than connection
termination

• Only application knows which
streams can’t be reset safely

https://github.com/quicwg/base-drafts/issues/758
https://github.com/quicwg/base-drafts/issues/485

Toward a Unidirectional World

• RST_STREAM announces that no new data will be sent nor old data
retransmitted
• Includes final offset to sync flow control

• STOP_SENDING announces that no new data will be read
• Solicits matching RST_STREAM

• …which includes final offset to sync flow control

write() read()

write()

close()read()

abort()

abort()

Transport-Clean Streams (#758,#485)

• RST_STREAM cancels the stream in one direction
• But only when the application requests it!

• Application can define how to request closure if needed

• Possible risk: Deadlock
• Receiver application no longer cares, stops reading
• Transport stack stops updating flow control
• Sender gets blocked on flow control

• Delivery of application-layer signal needs to be reliable (i.e. different
stream)

write()

close()

read()

write()

read()

STOP_SENDING →

abort()

https://github.com/quicwg/base-drafts/issues/758
https://github.com/quicwg/base-drafts/issues/485

Some Options

• Should we rename them to CANCEL_WRITE and
CANCEL_READ?
• Might be clearer than a unidirectional RST

• Should there be a CANCEL_BOTH?
• Addresses the common case in a single frame

• More complicated in unidirectional?

write()

abort()

read()

write()

close()read()

abort()

Stream Closure and Reliability
When is “closed” not “closed”? (#743)

https://github.com/quicwg/base-drafts/issues/743

Remember the Good Case?

• Stream contains two channels in opposite direction
• Each side writes data

• STREAM frames

• …which gets read on the other side
• MAX_STREAM_DATA

• …and eventually reaches an orderly end
• FIN flag on last STREAM frame

• Finally, the stream is closed

write()

close()

read()

write()

close()read()

The stream is “closed” when…

• Application has delivered all data to sending transport

• Sending transport has sent packets containing all data

• Receiving transport has received packets containing all data

• Receiving application has read all data from the receiving transport

• Receiving application has generated ACKs for packets containing all
data

• Sending transport has received ACKs for packets containing all data

• Receiver knows that sender knows all data has been delivered

• Sender knows that receiver knows that sender knows all data has
been delivered

• Receiver knows that sender knows that receiver knows that sender
knows all data has been delivered

“all data”  “RST_STREAM”

Sender State Machine

Open

App
finished
writing

All
data
sent

All
data

ACK’d

Reset
Sent

Idle?

Reset
ACK’d

Receiver State Machine

Idle? Open

Knows
Final

Offset

Received
all Data

Delivered
all data to

app

Reset
Received

Delivered
reset to

app

