GENERIC CONGESTION
FEEDBACK MESSAGE

RMCAT Design Team

Status report

Presenter

Zaheduzzaman Sarker
Ericsson Research
Status summary

- Produced a draft with a proposal for Congestion Control Feedback Message
 - Presented at IETF97
 - Includes necessary feedback information and packet format

- Worked on optimization
 - Two proposals presented at IETF97
 - Needed to analyze the gain vs complexity
 - Compared to overhead of compound RTCP the optimization is not worthwhile
 - Since IETF97
 - Discussed need to optimization
 - Tried to produce data to justify the gain with optimization

- Aiming to finish the work before IETF99
Proposed congestion feedback - a recap

- Feedback contains information about
 - Packet identifier
 - RTP sequence number
 - Packet Arrival Time
 - Arrival time stamp at the receiver of the media
 - Packet Explicit Congestion Notification (ECN) marking
 - If ECN [RFC3168] is used, it is necessary to report on the 2-bit ECN mark in received packets, indicating for each packet whether it is marked not-ECT, ECT(0), ECT(1), or ECN-CE.

Read at: https://datatracker.ietf.org/doc/draft-dt-rmcat-feedback-message/
Packet format

```
<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BT=RC2F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Report count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Block Length = TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Report Timestamp (32bits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SSRC of 1st media source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>begin_seq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>end_seq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L</td>
<td>ECN</td>
<td>Arrival time offset</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

As XR block.

Sent as a part of regular feedback.

Packet format

As RTCP/AVPF transport layer feedback.

Needed if want to sent as early feedback

Read at: https://datatracker.ietf.org/doc/draft-dt-rmcat-feedback-message/
Is this the right information to report?

- Yes. The information has been discussed with implementers and Congestion control algorithm proponents. We have not find any more information that is required to be send as feedback.
Is encoding this using RTCP XR and transport layer feedback appropriate?

- Yes.

Which format to select?

- Sending a XR block is a cleaner fit architecturally
- Sending as transport layer feedback saves couple of bites
- Stick to the framework in the draft

Optimization

- Colin Perkins presented some analysis at IETF97
 - RTCP overhead can be minimum of 80 octets per report
 - “Optimizing XR block likely not worthwhile”
 - Use of reduced sized RTCP makes a difference in overhead

- Two proposal was presented
 - RLE for loss
 - Might make a difference on a lossy channel
 - Separate ECN blocks when ECN is enabled on the path
 - Action point was to evaluate the gain vs complexity
 - Compared to RTCP overhead

- Optimization could also be done for ease of parsing
What to optimize for?

- Decision was to work with the scenarios discussed in the mailing list
 - low bitrate cases are more interesting

Low bitrate audio
- Uplink: 20 kbps
- Downlink: 20 kbps
- Audio packet rate: 50 packets/second

Low bitrate audio and video
- Uplink: 70-100 kbps
- Downlink: 70-100 kbps
- Audio packet rate: 50 packets/second
- Video framerate: 7-30 fps

High bitrate audio and video
- Uplink: 500 kbps
- Downlink: 8000 kbps
- Audio packet rate: 50 packets/second
- Video framerate: 30 fps
Data for optimization

- We got some data from Google’s deployed WebRTC solution in Chrome browser. Thanks!!
- 1 audio and 1 video stream in the session
- Send-side CC uses draft-holmer-rmcat-transport-wide-cc-extensions-01
- Receive-side CC uses draft-alvestrand-rmcat-remb-03
- Every other reduced size, every other compound

Audio at 6 kbps payload bitrate, 20 ms frames:
- Average RTCP bitrate with send-side CC: **182 bps**
- Average RTCP bitrate **without** CC: **112 bps**
- Reduced size: ~100 bytes on average, 1Hz
- Compound: 156 bytes, 1Hz

Gives an deployable limit on RTCP bandwidth
Data for optimization

- Interesting data for low bitrate audio only session.
- Google uses arrival timestamp compression to reduce reporting block size.

Audio at 6 kbps payload bitrate, 20 ms frames:
- Average RTCP bitrate with send-side CC: 182 bps
- Average RTCP bitrate without CC: 112 bps
- Reduced size: ~100 bytes on average, 1Hz
- Compound: 156 bytes, 1Hz

What would the required RTCP bandwidth using proposed packet format for this case?

Ans: 240 bps
Adaptive Feedback

- Adaptive feedback based on available bandwidth
 - *Impacts how much history to put into the feedback*
 - *Need some guidance*
 - *However, this is a general issue*

- *RMCAT should have*
 - Feedback message
 - Necessary changes to RTCP reporting
 - Separate draft on how to use feedback message
Conclusions

- The current proposal contains required information.
- Send XR block in regular report and as transport layer feedback in the reduce-sized report.
- Need to judge the gain of optimizing the packet format compared RTCP overhead for compound packet.
 - *Any optimization proposal must also provide relevant information for comparison.*
- The design team feedback message proposal should stick to defining feedback information and packet format.
Is there any other issues?