
ns3-rmcat open	source	module

(companion	to	draft-zhu-rmcat-framework)

Jiantao Fu,	Sergio	Mena,	Xiaoqing	Zhu



Outline

• Introduction
• Source	code	structure
• Relevant	features
– Comparing	congestion	controllers
– Running	ns3-rmcat
– Producing	results

• Example	plots
• Future	enhancements



ns3-rmcat,	what	is	it?
• New	module	to	ns3	simulator

– https://www.nsnam.org/
– C++,	python

• Current	uses	of	ns3-rmcat
– Run	rmcat wired/wireless	test	cases
– Flexible	testbed

• test/debug/experiment	with	NADA
• plug	different	traffic	source	models	(syncodecs)

– See		https://github.com/cisco/syncodecs
– Plot	rmcat test	case	results
– Further	processing	of	results	in	Matlab/Octave

• Reasons	for	open	sourcing
– Reference	implementation	of	rmcat framework
– Pluggable	congestion	control	algorithms
– Common	testbed	allowing	algorithm	comparison



Source	Code Structure
• Pluggable	congestion	controllers

– Common	superclass:	SenderBasedController
– Current	subclasses:	DummyController (CBR),	NadaController

• Topologies	and	test	cases	specified	in	rmcat internet	drafts
– wired
– wifi

• Custom	ns3	applications
– Classes	RmcatSender and	RmcatReceiver
– Sender-based	logic
– Feedback	format	not	implemented	yet

• Per-packet:	logic	of	RmcatReceiver very	simple
• Traffic	source	models:	git submodule	(syncodecs)
• Tools

– Mainly	for	processing	and	plotting	output	logs
• Simple	examples



RELEVANT	FEATURES



Comparing	Congestion	Controllers
• All	congestion	controllers	implement	a	common	interface:

– abstract	class	SenderBasedController
– This	class	also	contains	common	infra	code

• Important	member	functions
– virtual bool processSendPacket(uint64_t txTimestamp,

uint32_t sequence,
uint32_t size);

– virtual bool processFeedback(uint64_t now,
uint32_t sequence,
uint64_t rxTimestamp,
uint8_t ecn=0);

– virtual float getBandwidth(uint64_t now) const =0;
• Two	actual	controllers	implemented	so	far

– DummyController:	outputs	constant	bandwidth
– NadaController (doesn't	need	to	override	processSendPacket)



Running	ns3-rmcat
• Either	simple	examples…
– to	play	around	with	the	module
– simplistic	topology

• …	or	ns3	unit-testing	framework	(test.py)
– Automated
– Used	for	running	rmcat tests
– Two	test	suites:	rmcat-wired &	rmcat-wifi
– Further	details	in	README

• Output:	directory	with	log	files
– to	analyze	issues
– to	be	parsed	and	produce	plots	(see	next	slide)



Producing	Results

• Python	scripts	provided:
– parse	the	log	files	to	generate:
• json file	all_tests.json
• .mat files	for	individual	tests	(for	Matlab/Octave)

– using	the	json file,	plot	all	test	cases
• automated
• output:	.png files	using	library	matplotlib.pyplot

– file	all_tests.json can	be	loaded	in	Matlab/Octave
• portable	library:	JSONLab
• allows	for	customized	plotting/further	study



Example	Plots

ß rmcat-wired,	test	case	5.3
• One	forward	rmcat flow
• One	backward	rmcat flow

rmcat-wired,	test	case	5.6	à
• One	forward	rmcat flow
• One	forward	TCP	flow



Future	enhancements
• Extensions:
– Cellular	test	cases	and	topology
– Other	candidate	congestion	control	algorithms

• Alignment	to	rmcat drafts
– Inter-component	interactions

• draft-zhu-rmcat-framework
– Align	with	draft-ietf-rmcat-eval-test

• change	physical	bandwidth
– background	UDP	for	the	moment

• jitter	(not	present)
– Feedback	format	implementation

• Currently,	per-packet	(no	grouping/compression)



Finally

• Code	will	be	available	shortly
– Got	green	light	from	Cisco	Legal	for	open	sourcing
– Cleaning	up,	documenting	(README,	etc.)
– Feel	free	to	contribute!



Questions?


