
oneM2M Work on IoT Semantic and
Data Model Interoperability

Group Name: IRTF
Source: Tim Carey, oneM2M MAS Vice-chair, timothy.carey@nokia.com
Meeting Date: July, 2017

Over 200 member organizations in oneM2M

oneM2M Partnership Project

www.oneM2M.org
All document are publically available

http://www.onem2m.org/

© 2017 oneM2M 3

Ongoing Collaborations

MQTT

OMA DM/
LWM2M

HTTP/ CoAP/ (D)TLS/ WebSocket

TR-069/ TR-181

DDS

P2413

JTC1 WG10

SG20

MIoT

SCP, SmartM2M

Certificationref. arch, OHTP

WG3

Partnership

Sharing/Reference

(Liaison, workshop, …)

Endorsement (adoption)

Interworking

OPC-UA

WoT

SCEF/CIoT
OCF

AllJoyn

OSGi/DAL

• Collaboration is important to reach common understanding, avoid overlap and

build interoperable IoT ecosystems globally.

© 2017 oneM2M 4

Strong implementation base

Industry-driven Open source implementations

Examples of Commercial implementations /demos

5 interop. events so far

IotDM

M2M Common Service Layer in a
Nutshell

A software “framework”

Located between the M2M applications and
communication HW/SW that provide connectivity

Provides functions that M2M applications
across different industry segments commonly need

(eg. data transport, security/encryption, remote software
update...)

Provides these functions for the Internet of Things
sitting both on the field devices/sensors and in servers

And it is a standard – not controlled by a single private
company

oneM2M Architecture Approach

Pipe (vertical):
1 Application, 1 NW,

1 (or few) type of Device

Point to point communications

Horizontal (based on common Layer)
Applications share common service and network infrastructure

Multipoint communications

Local NW

Business
Application

Device

Communication
Network (wireline, wireless,

Powerline ..)

Gateway

Communication
Network 1

Communication
Network 2

Local NW

Gateway
IP

Application

A

Application Application Application

Common Service Layer

Device Device

Device

A
S

AA Device

A
S

S Common Service Layer

S

A

Common
Service Layer

A Application

Things

Things
representations
(including
semantics)

Work on Semantics - Ontologies

• oneM2M allows to annotate application specific resources
(M2M data) with semantic description.

– Uses a specialized resource type
<semanticDescriptor>

– Can contain proprietary semantics

or

– Semantics according to a published ontology

• The oneM2M base ontology is a top-level ontology that
allows to create sub-classes (or equivalence classes) for
application-level ontologies

– Example: Smart Appliances Reference Ontology
(SAREF)

• Ontologies can be used in oneM2M to describe the
application specific data model of an external system for
the purpose of interworking.

– oneM2M Generic Interworking uses such an
ontology to enable interworking of oneM2M entities
with devices of the external system

© 2017 oneM2M Partners

Device

hasService hasFunction

Operation
Input

refersTo

Controlling
Function

consistsOf

Operation
Output

Operation
State

hasOperation
State

exposes
Function

Interworked
Device

Thing
hasThingProperty

hasThingRelation
Thing

Property

is-a

is-a

Variable

Output
DataPoint

is-a

is-a

FunctionService

Operation

hasOperation

Command

hasCommand

is-a

Aspect

Meta
Data

Area
Network

isPartOf

hasOutput hasInput

hasMetaData

describes

SimpleType
Variable

Measuring
Function

Input
DataPoint

exposes
Command

is-a

The oneM2M Base Ontology

GET_
Input

DataPoint

is-a

SET_
Output

DataPoint

Variable

Aspect

hasOutput
DataPoint

hasInput
DataPoint

hasSub
Service

hasOutputDataPoint

is-a

hasInputDataPoint

Variable

Legend: A class shown with grey
shading indicates that the same
class appears multiple times in the figure

Variable

hasSub
Structure

Variable
Conversion

hasConversion
is-a

convertsTo

Work on Semantics Query

• oneM2M includes a semantic query feature that includes
both discovery and query capabilities

– Semantic resource discovery is used to discover resources: Give me the
resources that represent the temperature sensors located in Room 1.

– Semantic query is used to extract “useful knowledge” (to answer the
query) over a set of “RDF data basis”. What is the manufacture name
and production year of the temperature sensors located in Room 1?

• To successfully execute a semantic query requires
appropriate semantic graph scoping and extra information
represented in RDF triples

– Semantic Graph Scoping: How to collect RDF triples from semantic
descriptors (distributed in the resource tree) to construct a RDF data
basis for a given semantic query.

– Representing Extra Information in RDF Triples: This is for how to query
information that was originally not stored as RDF triples, such as data
stored in <contentInstance> resource (or other oneM2M attributes such
as expirationTime, etc.).

© 2017 oneM2M

Partners

... ...

oneM2M Normal
Resource

oneM2M
<semanticDescriptor>
Resource

RDF
Data Basis

SD_n

SD_1

SD_1 SD_2 SD_3

SD_2

SD_3

Semantic Graph
Scoping (SGS)

A SPARQL Query
Statement

Executed on Returns

Work on Semantics Mashup

• oneM2M supports semantic mashup, which fully
leverages semantic-related technologies and is defined as
a process to discover and collect data from more than one
source as inputs, conduct business logic-related mashup
function over the collected data, and eventually generate
meaningful mashup results.

• Example: Users/clients are interested in a metric called
“weather comfortability index”, which cannot be directly
provided by physical sensors, and in fact can be calculated
based on the original sensory data collected from multiple
types of sensors (e.g. temperature and humility sensors).

© 2017 oneM2M

Partners

• A complete semantic mashup process consists of multiple stages/operations:
➢ Each specific mashup application (e.g. weather comfortability index application) has a

corresponding Semantic Mashup Job Profile (SMJP) represented in RDF format.
➢ A client first discovers a SMJP based on her needs (Operation 1).
➢ A Semantic Mashup Instance (SMI) is created based on the discovered SMJP (Operation 2).
➢ The data sources are identified for the created SMI (e.g. through semantic resource

discovery) based on the guideline as specified in the SMJP (Operation 3).
➢ The data is collected from the identified data sources and mashup result is generated and

may be periodically refreshed based on the mashup function as specified in the SMJP
(Operation 4). The mashup result can be retrieved by the client (Operation 5).

Resource Hosts

(RH)

Data

Source-1

Semantic Mashup Job

Profile (SMJP)

SMI

Instantiation

SMJP
(Data Sources Filter

& Mashup Function)

Semantic Mashup

Instance (SMI)

Identified Data

Sources
Mashup

Result

Client

Semantic Mashup

Function (SMF)

Operation 1: SMJP
Discovery Operation 2:

SMI Creation

Operation 3: Data
Source Identification

Operation 5:
Mashup Result

Retrieval

Operation 4: Data Input
Collection and Mashup Result

Generation

...

Work on Semantics Access Control

• In oneM2M, access to resources needs to follow Access Control Policies (as defined in ACP
resources).

• An unique issue in oneM2M for semantic query is that for a given semantic query, ACPs still
need to be enforced in the sense that only the RDF triples stored in certain
<semanticDescriptor> resources (i.e., allowed by ACP) can serve as the RDF data basis for this
query.

• In oneM2M, two solutions are identified to solve this ACP-related issue when processing a
semantic query:

– 1. ACPs are still kept in their original form and stored in the resource tree. For each received
semantic query, the Hosting CSE directly decides which <semanticDescriptor> resources are allowed
by the ACP to form the RDF data basis for this query.

• Operations at the Hosting CSE: Receive a semantic query -> semantic graph scoping with ACP
(i.e. search <semanticDescriptor>s which are allowed by ACP) -> Generate RDF basis -> Execute
the semantic query over RDF basis.

– 2. ACPs stored in the resource tree are cloned and re-represented as RDF triples and directly stored
in the Triple Store so that the semantic query with access control can be fully processed in the Triple
Store.

• Operations at the Hosting CSE: Clone ACP in RDF triples and store them in the Triple Store ->
Receive a semantic query -> Modify the semantic query by adding ACP constraints in the query
statement -> Execute the modified semantic query over all RDF triples in the Triple Store.

© 2017 oneM2M

Partners

Work on Abstraction using SDT:Goals

Describe devices and device services in a way which is
independent of the LAN technology in a format which is
convenient and reliable for integration.

1.Keep it simple, especially for manufacturers to contribute

2.Modularity for functions and device types

3.Make it easy for developers to create unified APIs

4.Be independent of underlying home-area network
technologies

Make it available under an open license.

How Things Come Together

oneM2M / MAS e.g. OSGi

SDT: Basic Components

Domain

Unique name, or "wrapper" which acts like a namespace, set by the
organization creating the SDT, allowing reference to a package of
definitions for the contained ModuleClasses and device definitions. Can
be referenced when extending ModuleClasses. It has two possible uses:
to select the scope of a technology domain, or to set the scope of a use
case domain (like Home, SmartGrid, etc)

Device & Sub-Device
Physical, addressable, identifiable appliance/sensor/actuator, that has
one or more functionalities.

ModuleClass

Specification of a single service with one or more service methods, the
involved abstracted data model and related events. The expectation is
that each separate service which may be used in many kinds of Devices
(like PowerON/OFF, Open/Close, ...) will be described by a ModuleClass
which can be re-used in many Device definitions.

DataPoint
A DataPoint element represents an aspect of a device which can be
read/written to, and forms part of a device’s data model. Manipulating
DataPoints is the most common way of controlling devices. Each
DataPoint has an associated type which facilitates data integrity.

Action

Action elements are an efficient way of describing arbitrary sequences of
operations/methods; these are very common in automation. Actions
preserve transaction integrity by putting together all the parameters
("args", see next section) with the method which checks and executes
them, in one step.

Property Property elements are used to append to Devices and their ModuleClass
elements with arbitrary additional information.

Re-usable XML Modules

Power Switch
(for my music box)

Description for Applications
(and Programmers)
Data Model (XML)

Features,
Attributes,

Info about internal
states, C

o
n

strain
ts

a boolean actuator (like power switch)

a real-value sensor (like temperature sensor)

a boolean sensor (like window sensor)

Template modules of XML for

Application
developers can
make use of a small
set of common
functional elements,
not adapting API
code for every
technology

App

Domain specific IMs offer a library of
"module" elements, which
conform to the ModuleClass,
for the most common functions

SDT XSD

Information Modelling in oneM2M

▪ Module

➢ binarySwitch

➢ audioVolume

➢ televisionChannel

➢ audioVideoInput

➢ mediaSourceList

▪ Property

➢ country

➢ deviceID

➢ deviceType

➢ deviceName

➢ deviceModelName

➢ …

SDT Modeling Resource Mapping SDT Mapping

XSD Mapping

SDT as UML
C

o
m

p
o

n
en

ts
D

at
a

Ty
p

e
s

SDT Tool

• Generate oneM2M XSD

• Generate documentation

– Plain Text

– Markdown

– OPML (Mindmap)

– SVG for oneM2M Resources

• Generate code templates
– Java interfaces and classes

– Swagger

Work on Information Models

• Soon after the initial launch of release 1.0 of oneM2M, member
companies requested to develop information models that can be
interworked from various IoT technologies and represented to
applications with a consistent fashion.

– The work of the Proximal IoT Interworking specification (TS-0033) that incorporates
various interworking technologies (e.g., LwM2M, OCF, AllJoyn, DDS, OPC-UA, WoT,
Modbus)

– The work of the generic interworking mechanism (TS-0030) is to specify a procedure
where devices do not necessarily require a specific representation (e.g., KNX).

– The first domain requesting development of information models was the home domain
– this led to a Study of the Home Domain (TR-0013) and follow-on device model
specifications (TS-0023).

• Based on the successful work with the Home Appliance models, member
companies are looking toward developing information models in the
Industrial (TR-0018), Vehicular (TR-0026) and Smart City (TR-0046)
Domains. But we will only do these in collaboration with experts in these
domains.

© 2017 oneM2M Partners

Home Appliances Models

• Based on SDT, oneM2M defines Information Models for Home Appliances in TS-0023 and its
latest version is v.3.4.0.

• These appliance/device models were contributed by device manufacturers, service providers
as well as adaptations from other standards (e.g., ECHONET, OMA Device WebAPIs)

• This version currently includes 42 device models and 70 module classes

• TS-0023 is still evolving and has more device models and functionality for Rel-3

• Television device model example

© 2017 oneM2M Partners

Properties (Optionality) Module Class (Optionality) Actions (All optional) & Data Points (Optionality)

TV

manufacturer(M) binarySwitch(M) toggle(), powerState(O)

modelID(M) audioVolume(O)
upVolume(), downVolume(),

volumePercentage(M), stepValue(O), muteEnbled(M),…

deviceType(M) televisionChannel(O)
upChannel(), downChannel(),

chNumber(M), availableCh(O), perviousCh(O), chName(O)

deviceName(O) playerControl(O)
nextTrack(), previousTrack(),

currentPlyerMode(M), modeName(O), modes(M), speed(O)

country(O) mediaInput(O)
mediaID, supportedMediaSources,

mediaName, status, mediaType

swVersion(O) mediaOutput(O)
mediaID, supportedMediaSources,

mediaName, status, mediaType

Home Appliances Models: Semantic
Interoperability

• Realizing the need for alignment of information/data models as a first step
in interoperability, oneM2M is starting a process of aligning its models
with other groups (e.g., OCF). Remember that the original models were, in
part, based on work of other standards organizations.

• As the first target, oneM2M recently has started the process to align
Home Appliance information models with OCF’s version 1.0 data models.

– 25 of 35 devices were only defined in OCF 1.0 while 10 were defined in both

– 25 new devices are added to oneM2M, and 10 existing oneM2M models are modified to
be aligned with OCF 1.0 data models

– So now 35 devices in OCF 1.0 is all mappable with oneM2M devices

• Next step for OCF data model mapping
– OCF may need to define new device models that are existing in only oneM2M to support

full interoperability in the future

© 2017 oneM2M Partners

Example: WoT Interworking – WoT
Interface

21

• Exposing the WoT interface (described in TD) to oneM2M systems

– Benefit: WoT services/data can be consumed by oneM2M applications

Actuator

CSE

WoT i/f

Inter-working
Proxy (AE)

Mca

oneM2M Application (AE)

Mca

Sensor

WoT i/f

Inter-working
Proxy (AE)

Mca

MN

CSE

Mcc
Infrastructure Node

Thing
Description

encapsulate &
map

uses

provides

uses

oneM2M Resource Model

WoT TD
mapping

uses

provides

22

• Exposing oneM2M interfaces to WoT systems

– Benefit: oneM2M services/data can be consumed by WoT Servients

Example: WoT Interworking –
oneM2M Interface

WoT Servient

Interaction Model

Binding Templates

Application(s)

Logic + Data

Cient

WoT Servient

Interaction Model

Binding Templates

Links (URIs),

Metadata

ServerClient Role Server Role

Thing

Description

Example: WoT Interworking - SDT
Mapping

23

• Conceptual alignment observed between oneM2M/HGI SDT and W3C
WoT information models

• It implies promising semantic interoperability.

• Technical study is progressing on both sides

Example: WoT Interworking – Home
Automation with SDT

24

[deviceAirConditioner]

contDefinition

creator

ontologyRef

0..1 (L)

0..1 (L)

1..n

1

[binarySwitch]0..1

[runMode]0..1

[temperature]0..1

[timer]

[turbo]0..1

[wind]0..1

[subscription]
0..n

[mgmtLink]

0..1

0..1

deviceLabel

manufacturer

model

deviceType

fwVersion

swVersion

hwVersion

deviceName

subModel

osVersion

country

location

systemTime

manufacturerDetailsLink

manufacturingDate

supportURL

presentationURL

1

1

1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

[deviceInfo]

1

0..1

0..1

0..1

[binarySwitch]

0..1
[toggle]

1
contDefinition

1
powerState

0..1
creator

0..1
ontologyRef

0..n
<subscription>

‘property’

‘@type’

‘@type’

‘property’ or
‘action’‘action’

‘event’

Device Model

Module Class

Module
Classes

Device properties

Data Point

Action

SDT concepts

WoT concepts

