Workshop on IoT Semantic/Hypermedia Interoperability

Fairhair

Teresa Zotti, Resource Model WG chair Prague, 15th July 2017

Status Quo

- <u>Building Automation and Lighting Control (BA&LC) market</u> segment has a yearly global turnover of > \$10B
- Many proprietary protocols are used, resulting in a fragmented market and many sub-market verticals
- But a few established 'ecosystems' represent a considerable share of this market
 - BACnet and KNX based systems and components account for an estimated yearly global turnover of > \$3.5B
 - Zigbee is emerging as key application ecosystem for wireless Lighting Control propositions

Opportunity

- There are many advantages opened up by the use of "IPv6" and IoT technologies in BA&LC
 - Scalability, seamless integration of multiple physical media, integration with IT and Smart Devices, compliance to IT security practices and policies, ...
- Eco-systems BACnet, KNX and Zigbee are seeking to extend and transition to the "IoT space"
 - Ecosystems maintain their core assets: Data Model, tooling, branding, organization, certification programs New technologies like Thread facilitate this transition by providing a cost-effective, reliable wireless IP solution

Fairhair Mission & Approach

Mission

 Fairhair envisions a future where the BA&LC industry uses IoT technologies to build cost-effective, scalable, and secure systems solutions

Approach

- Fairhair does not aim to define a new application layer protocol and ecosystem; Fairhair fully recognizes the value and knowledge captured in the Data Models, brand promise, and tooling of strong established ecosystems, primarily BACnet, KNX and Zigbee
- Solutions are based as much as possible on the state of the art from the IETF. Fairhair does not define IP-based network layer solutions; instead it intends to cooperate with IETF and alliances like the Thread Group and Wi-Fi Alliance to extend their network solutions to be fully suitable for BA&LC propositions in Smart Buildings.

The image cannot be displaye Your computer may not have

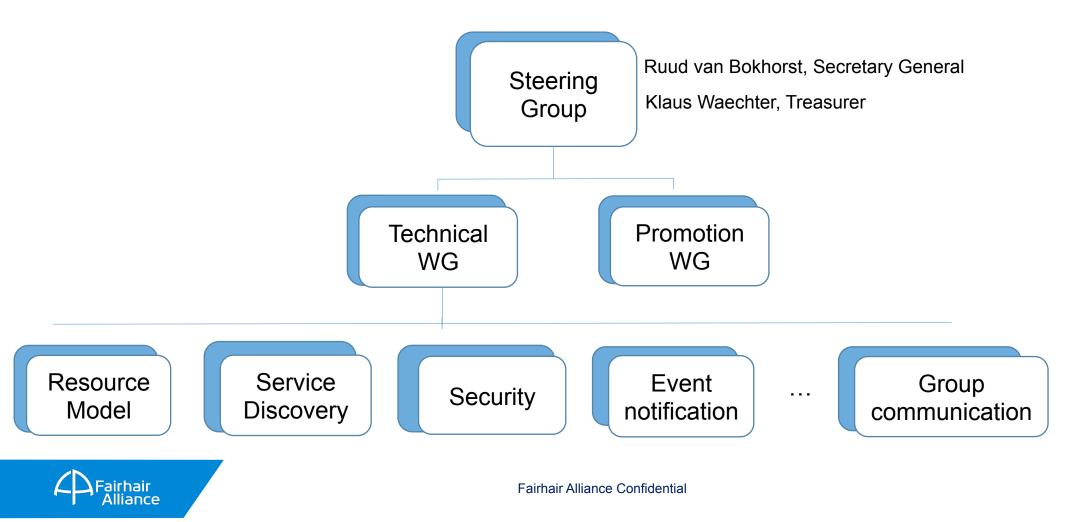
Sponsor members

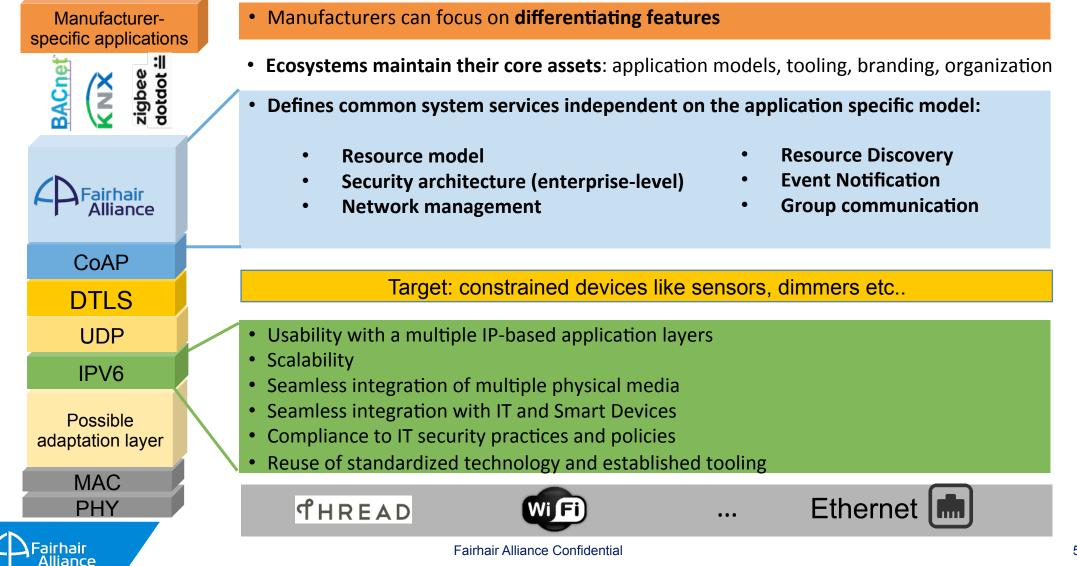
DHILID

zumtobel group

SHICON

Regular members




Fairhair Alliance Confidential

Fairhair Alliance organization

The Fairhair Alliance is an open, global consortium of silicon vendors, lighting, building automation, and IT companies, organized as a Member Program of IEEE-ISTO

Technology stack & main building blocks



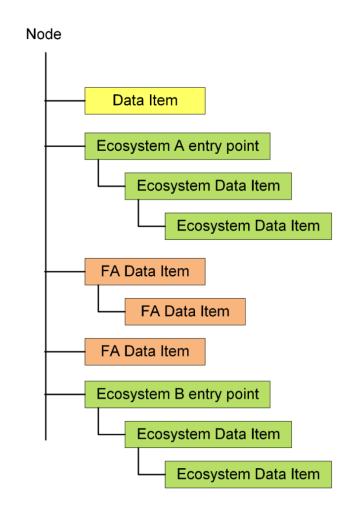
Expected process

- Fairhair Alliance to deliver technical specifications for common services
- Solutions to be adopted by target ecosystems to facilitate transition to IoT
- Challenges:

Fairhair Alliance

- Different timelines
- Backward compatibility
- Often different requirements

Fairhair Resource Model

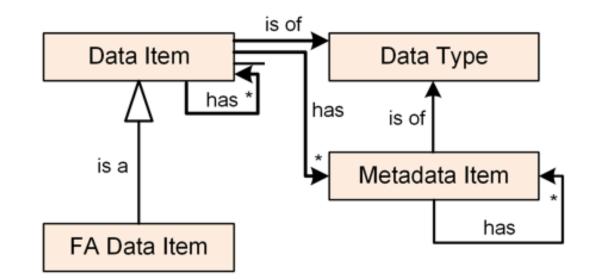

The Resource Model (RM) is a generic framework to represent devices and their capabilities in a RESTful way

Ecosystems like BACnet, KNX, Zigbee dotdot can define a specific resource model based on this framework

 Does not prescribe a specific URI structure; expects ecosystems to define a resource tree representation for their data models examples: zcl/e/ep#/clusterID/c/commandID .bacnet/ObjectTypeID,instance#

Recommends ecosystems adopt a unique entry point name (e.g. / zcl, /.bacnet, /knx) below the node root

Defines a /.fa/<common services> URI to hold Fairhair services common for all ecosystems



Fairhair Resources: Data & Metadata

Data items arranged into hierarchies

High-level model resource model

- ❑ data has metadata → semantically enriches data items, irrespective of whether the data item is a FA data item or is ecosystem defined
- metadata may have metadata (e.g. language of description metadata)
- Data is of a specific data type (e.g. Boolean)

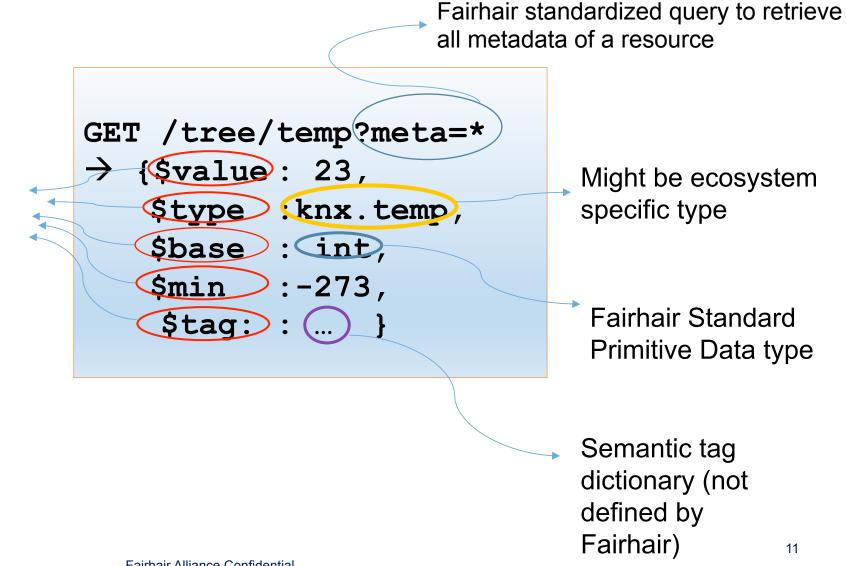
Fairhair semantic interoperability: Metadata

Standard common set of metadata across multiple ecosystems applied to any resource

Ecosystems and manufacturer can seamless extend metadata beyond those standardized

Metadata		Resource Name (mnemonic)
Туре	The specific type name of the data item.	\$type
Base	The base data type of the data item (e.g. Boolean, unsigned integer)	\$base
Display Name	A name for the data item intended for human consumption. MAY be localized (i.e. expressed in the language of a specific location like EN, DE, NL)	\$disp
Unit	The engineering unit of the data item (e.g. meter, Celsius, Fahrenheit)	\$unit
Min	The minimum value allowed for the data item.	\$min
Max	The maximum value allowed for the data item.	\$max
Access	The allowed methods of accessing the data item (i.e. readability, writability, etc.)	\$acc
Variability	The expected variability of the data item	\$var

RESTful interface to access resources


- Runtime access to self description of system
- RESTful principles, CoAP methods (i.e. GET, PUT, POST, DELETE)
- □ JSON / CBOR representation
- scalability get the information you need at the relevant time
- $\Box \text{ RESTful access to resources } \rightarrow \textbf{URI}$
 - Data value only
 - Data value and complete metadata
 - Direct access to specific metadata
 - □ Filter options
 - e.g. granularities, or specific metadata

```
GET /tree/temp
→ 23
GET /tree/temp?
meta=$type
→ temperature
```


Example of standardized metadata

Standard Fairhair mnemonics

Fairhair Alliance Confidential

Fairhair standard data types

Primitive Data Type

Set of data types that can't be derived from other data types

Complex Data Type

Set of data types composed of Primitive Data Types

□ Metadata which express restrictions to Data Types (e.g. resolution, range, length)

Current status: Fairhair spec 0.7

The first three draft specifications from Fairhair cover Resource Modelling, Resource Discovery, and Security.

An overview of the three draft specifications is available in a White Paper published on the Fairhair website at <u>www.fairhair-alliance.org/technology/white-papers.html</u>.

Fairhair decided to benchmark the scope and direction of its work by opening up to a selected group of external companies, organizations and university groups, who were asked to review the draft specifications.

Valuable input drives next steps

Desirable properties

Self-descriptive: the system would benefit if Fairhair standard metadata and their description would be made available in a machine-readable format.

Future-proof: descriptions and mnemonics of metadata needs to be maintained/updated.

Flexibility:

- Add context for better interpretation of metadata (Linked data style)
- Key/value system might have some limitations for ecosystems interested to adopt "triples".

Actions planned

Initial Modelling in turtle started

Investigation on extens model to support Links

for research Which serialization format?

Seek for landing spot to

metadata descriptions (e.g

- Payload efficiency on constrained device?
- Which guery mechanisms on end nodes?

org (?))

Dortunity for

Opportunity

Come and join the Alliance

Companies, associations and universities can benefit by:

- Recognition as one of the leaders making the Internet of Things in smart buildings a reality
- Breaking down the traditional silos of independent building-automation and lighting-control systems in buildings
- Co-creating specifications for a common network infrastructure
- Defining requirements and validating related specifications to create an aligned, unified, IP-based solution
- Co-creating draft specifications for the application protocol layer, for adoption by the respective ecosystems
- Getting access to specifications
- Participating in interoperability testing with other members

Contacts

info@fairhair-alliance.com

Ruud van Bokhorst, Secretary General

secretary-general@fairhair-alliance.org

Thank you

