lnec

CHALLENGES FOR SEMANTIC LWM2M INTEROPERABILITY IN COMPLEX IoT SYSTEMS

Abdulkadir KARAAGAC*, Floris Van Den ABEELE, Jeroen HOEBEKE JULY 15, 2017

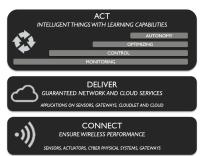
INTERNET & DATA SCIENCE LAB

300

Internet experts and data scientists

IDLab focuses its research on *internet technologies* and *data science*. We develop technologies outperforming current solutions for communication subsystems, high speed and low power networking, distributed computing and multimedia processing, machine learning, artificial intelligence and web semantics.

+500


Collaborations with innovative industry

IDLab collaborates with many universities and research centres worldwide and jointly develops advanced technologies with industry (R&D centers from international companies, Flanders' top innovating large companies and SMEs, as well as numerous ambitious startups).

40+ Professors, 40+ Post Docs

Total income (projects): 15 M€/Y Fundamental: 3 M€ Strategic: 3,5 M€ EU projects: 4 M€ Local industry: 4,5 M€

www.idlab.technology www.idlab.uantwerpen.be www.idlab.ugent.be

PROJECT HyCoWare Hybrid Connected Warehouses

WAREHOUSES : Handling of goods by people using transport systems

Increased efficiency and quality \rightarrow Automated handling

FID SOLUTIONS CONNECTED GOODS (RFID tags & readers)

CONNECTED PEOPLE

waves

PROJECT HyCoWare THE PROJECT'S GOALS

NOVEL CONNECTED PRODUCTS

for goods, operators and transport systems, building upon wireless IoT

Diagnosable heterogeneous wireless connectivity Plug-and-produce using open IoT standards

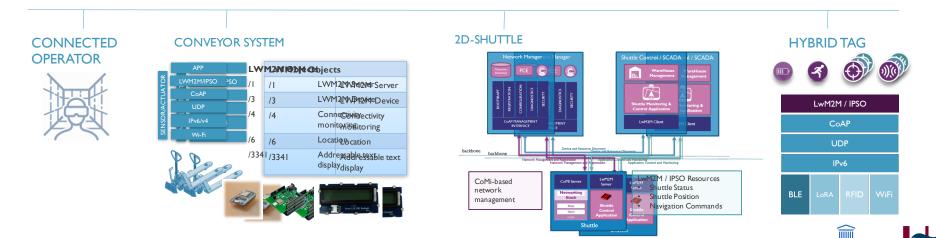
GHENT

Antwerne

OPEN IoT STANDARDS IN HYCOWARE

OPEN IoT STANDARD-BASED

- Discovery
- Device management
- Data access
- • •


LESHAN		CLIENTS SECU
Clients / 004402090413109		Multi-value TLV - Single-value TLV -
LWM2M Security	/0	
		Create New Instance
Instance 0		Observe Bead Write Delete
LWM2M Server UBI		Exec Q
Bootstrap Server		Exec ¢
Security Mode		Exec Ø
Public Key or Identity		Exec ¢
Server Public Key or Identity	/0/0/4	Exec Ø
Secret Key	/0/0/5	Exec Ø
SMS Security Mode	/0/0/6	Exec ¢
SMS Binding Key Parameters	/0/0/7	Exec Ø
SMS Binding Secret Keys	/0/0/8	Exec O
LWM2M Server SMS Number	/0/0/9	Exec Ø
Short Server ID	/0/0/10	Exec Ø
Client Hold Off Time	/0/0/11	Exec Ø
LWM2M Server	И	
		Create New Instance
Instance 0	/1/0	Observe B Read Write Delete
Short Server ID		Observe 🕨 🔳 Read
Lifetime		Observe 🕨 🔳 Read Write
Default Minimum Period		Observe 🕨 🔳 Read Write
Default Maximum Period	/1/0/3	Observe 🕨 🔳 Read Write
Disable	/1/0/4	Exec 🗘
Disable Timeout		Obeana b B David Write

GHENT

UNIVERSITY

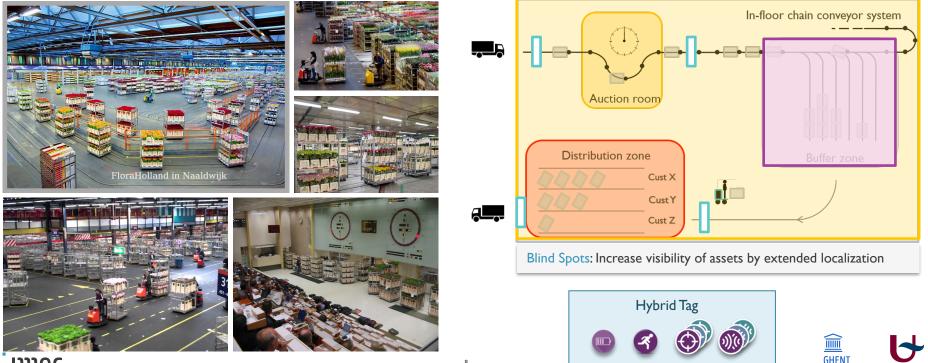
Universiteit

Antwerpen

ເກາຍດ

OUR CONTRIBUTION

CHALLENGES FOR SEMANTIC LWM2M INTEROPERABILITY in COMPLEX IoT SYSTEMS


- Hybrid Sensors/Tags
- Support for a reversed LWM2M interaction model
- Management of Constrained Networks
- Bridging RESTful client-server and pub/sub architectures while preserving semantics

HYBRID SENSORS/TAGS

HYBRID SENSORS/TAGS HYCOWARE - CONNECTED GOODS & OPERATORS

AIM – increase visibility of trolleys carrying buckets with flowers

UNIVERSITY

Antwerpe

HYBRID TAG DESIGN

Every tag modelled as single LWM2M device (thousands of tags)

Ist prototype is available. Serves as development platform. Pilot production: end of year.

Hybrid Tag

LWM2N	1 Objects
/1	LWM2M Server
/3	LWM2M Device
/4	Connectivity monitoring (Multiple)
/6	Location / Position
/	Battery Level
1	Sensor info (T/Rh)
1	

- Individual resources for battery level, temperature, position...
- Custom LwM2M Object for Hybrid Tag??
 Too Fine Grained...
- Requires many interactions to retrieve all data. e.g. observing on position data!!
- IPSO Composite Object??

ເກາຍc

HYBRID TAG LWM2M BATCH MODEL WITH AGGREGATED RESOURCES

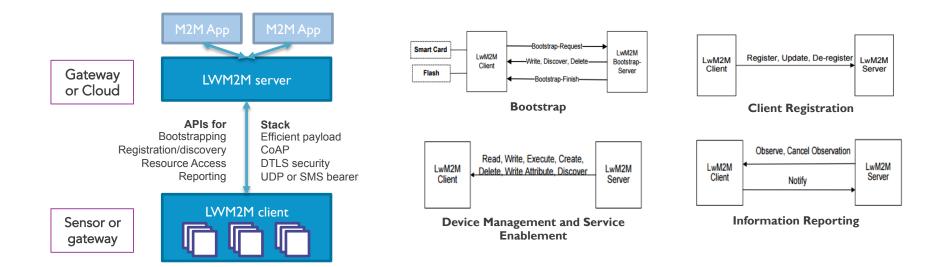
Object	Object ID	Object URN	Multiple instances?
LWM2M Batch object	XXXX	urn:oma:lwm2m:ext:XXX	Yes

Resource info

Resource name	Resource ID	Access Type	Multiple instances?	Description
Batch configuration	YYYY	R/W	No	Retrieves or sets batch configuration
Batch value	ZZZZ	R(/W)	No	Retrieves or writes

GET on /XXXX/0/YYYY

{"value": ["/1/3/1","/3311/0/5850"]}


GET on /XXXX/0/ZZZZ

```
{"value": [
        { "uri" : "/1/3/1", "value" : "..."},
        { "uri" : "/3311/0/5850", "value" : "..."}
]}
```



SUPPORT FOR A REVERSED LWM2M INTERACTION MODEL

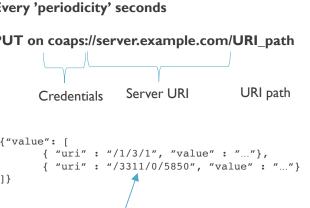
LWM2M INTERACTION MODEL

SUPPORT FOR A REVERSED LWM2M INTERACTION MODEL LORAWAN DEVICE CLASSES AND MAC

Mostly Class A Devices available on the market today

ເກາec

SUPPORT FOR A REVERSED LWM2M INTERACTION MODEL LORAWAN DEVICE CLASSES AND MAC


Object	Object ID	Object URN	Multiple instances?
LWM2M Uplink* batch object	XXXX	urn:oma:lwm2m:ext:XXX	Yes

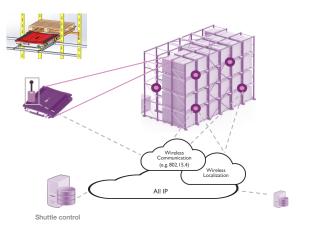
 \ast Or extension of previously introduced batch object

Resource info

unec

Resource name	Resource ID	Access Type	Multiple instances?	Description
Batch configuration	YYYY	R/W	No	Retrieves or sets batch configuration
Batch value	ZZZZ	R(/W)	No	Retrieves or writes
Short Server ID		R(/W)	No	ID of server to which data will be sent (allows to retrieve server URI and security info in corresponding Server and Security Object)
URI Path				URI path on server
Periodicity		R/W	No	Frequency of uplink transmissions in seconds

Preserve semantcis

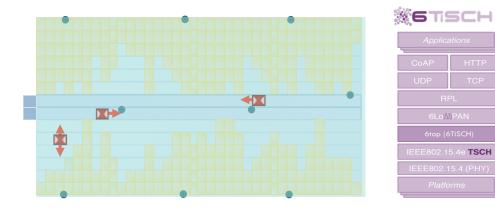


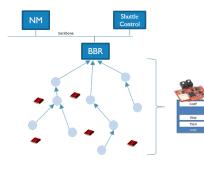
Universiteit

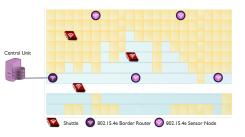
Antwerper

MANAGEMENT OF CONSTRAINED NETWORKS

MANAGEMENT OF CONSTRAINED NETWORKS **HYCOWARE - 2D-SHUTTLE**

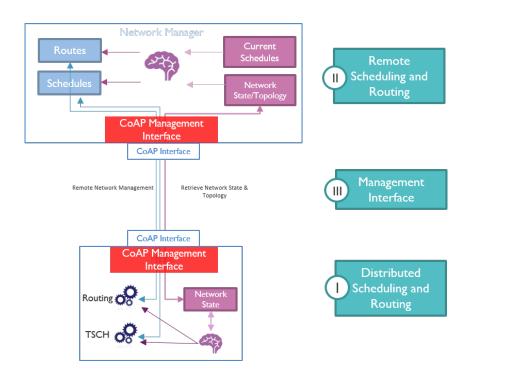


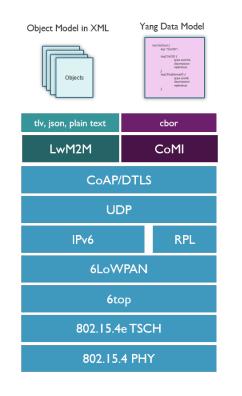

Intelligent Self Contained Transport Vehicles


Reliable, Deterministic and Latency Bounded Communication with Shuttle Control System

- To Send Status and Position Updates н.
- To Receive Navigation Commands

802.15.4e 'Mesh' with wireless backbone

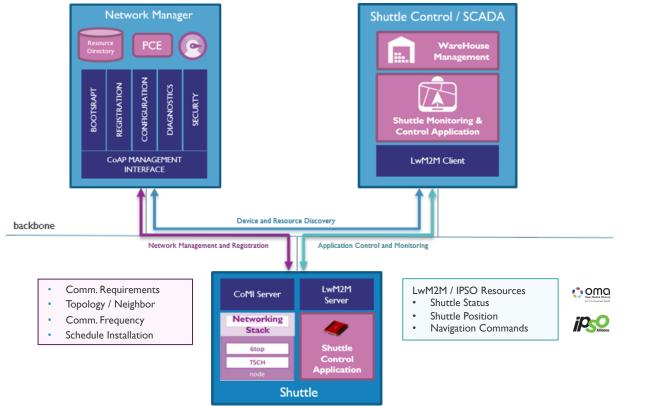



6LoWPAN

IEEE802.15.4e **TSCH**

umec

MANAGEMENT OF CONSTRAINED NETWORKS DYNAMIC WIRELESS INDUSTRIAL NETWORKS

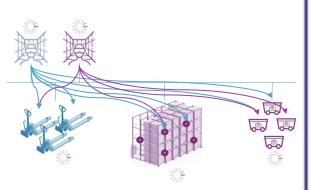


ເກາຍc

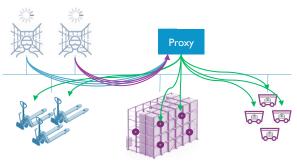
MANAGEMENT IN CONSTRAINED NETWORKS SYSTEM ARCHITECTURE

 $\widehat{\blacksquare}$

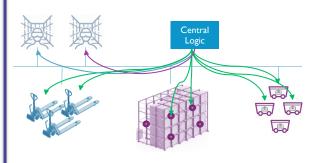
GHENT


UNIVERSITY

Universiteit


Antwerpen

BRIDGING RESTFUL CLIENT-SERVER AND PUB/SUB ARCHITECTURES WHILE PRESERVING SEMANTICS


PUB/SUB <-> REST BRIDGE PROBLEM DESCRIPTION

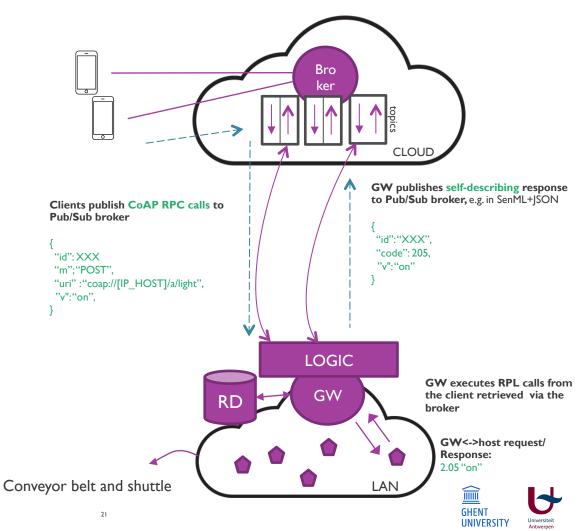
- Each client has to maintain observe on several resources on several devices
- Each End-device (possibly embedded/constrained) has to handle several notifications for observe requests from various clients for several resources
- Excessive number of observe and notification messages

- Each client has to maintain observe on several resources on several devices
- Each End-device (possibly embedded/constrained) has to handle notifications for observe requests for several resources, but one notification per resource
- Relatively less number of observe and notification messages

PUB/SUB??

- Main logic is on Central Unit
- Only, central logic has to maintain observe on several resources on several devices and notify client nodes if and only if it is necessary
- Each End-device (possibly embedded/constrained) has to handle notifications for observe requests for several resources, but one notification per resource

ເງຍອ


PUB/SUB <-> REST BRIDGE

Goal? Facilitate data exchange and control between pub/sub and REST hosts.

How? Build a bridge that translates between the two paradigms. Consists of two components:

I. Sharing CoAP responses with subscribers

2. CoAP request RPC API to issue CoAP requests All messages are exchanged in JSON.

CONCLUSION

- Open IoT Standards
 - Flexible, diverse and configurable IoT-based applications
 - Widely scalable and distributed networks of heterogeneous devices, systems and services at any scale
 - Several standardization efforts (e.g. LWM2M, IPSO, OCF, oneM2M...) defining appropriate semantics to boost the interoperability in the IoT Ecosystem
- Challenges
 - The interoperation and orchestration of devices and systems from different ecosystems
 - Defining complex standard-compliant IoT devices and systems
 - What to do when the standard does not exactly offer what you need?

Abdulkadir Karaagac

Ghent University – IDLab - imec iGent Tower - Department of Information Technology Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium Office 210.010 (11th Floor) E-mail: abdulkadir.karaagac@ugent.be Web: IDLab.UGent.be

embracing a better life

