
Distributed Name Rewriting 
(DINRG Feb 17, 2018, San Diego)  

<christian.tschudin@unibas.ch> University of Basel

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

Overview
What is the common abstraction behind “distributed Internet infra-
structures”?

Hypothesis: Distributed Name Rewriting

This talk revisits (in 15 min): DNS, BTC, ARP, DHT, NFN, Tangle, GitHub …

Other possible names (instead of DNR) from this morning: 
- distributed secure mappings (bind identities to keys), potentially trustless 
- NFaaS (securely map inputs to computation results)

2

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

DNS vs BTC
DNS:

lookup(in) --> out 
e.g. ‘in’ is hierarchical domain name, ‘out’ is IP number

BTC:

lookup(in) --> out 
‘in’ is random (account or tx) number, ‘out’ is an account balance, a
transaction, a smart contract, an insurance policy etc

3

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

DNS vs BTC (contd)
At the end of the day, DNS and BTC both are:

• small to midsize databases (BTC is a ledger, after all)

• global (distributed or replicated)

• simply query interface, maps one name to another  
 

There are differences, of course …

4

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

DNS BTC

versioning  
(history) no yes 

(IOTA has snapshots and forgets)

consistency eventually cons. 
(dependent on caching params)

strong cons. IFF you are 
on the winning branch

input names  
(how to prevent conflicts) unique because pre-coordinated unique because random

decentralized storage yes 
(iterative/recursive remote query)

no 
(full replica)

DNS vs BTC - somehow different

5

one very big difference, though:

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

DNS vs BTC - really different
b/c of the UPDATE method

DNS: "pre-established agreement on delegation”
updates only possible in delegated subtree, are independent and can be done in parallel

BTC: trustless process
Byzantine Agreement Protocol for global, synchronous consensus

Is “distributed name rewriting" still a good common abstraction? I think yes.

6

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

More Name-Rewriting Infrastructures
Seen so far: DNS, BlockChain (BTC), Tangle (IOTA)

ARP - dynamic mapping

Forwarding - routing table with next-hop lookup

DHT - an index, beside DNS the other “exemplary lookup” infrastructure

PKI - secured_lookup(some_public_key) —> signing_key

cloud computation - lookup(fct(in)) —> result 
Web pages are computation results: lookup results are cacheable, see memcachd

NFN (Named-Function-Networking) — resolve(symbolic_expr) —> result 
 scalable! immutable inputs, confluence of resolution strategies avoids need for consensus finding

Again: “update” is probably the strongest differentiator

7

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

Communication is Computation is Distributed
Name Rewriting is Communcation is ...

Notation used: A(something) means: "something is on host A” config[..] represents global state

Story: We want to replicate an item, send a unicast datagram from A to B via X
config[A(srcA,nameB,item), B(srcB)] 
 -> name rewriting due to DNS: map nameB to B's IP address 
config[A(srcA,nameB,dstB,item), B(srcB)] 
 -> name rewriting due to route table lookup: map dstB to gwX 
 -> name rewriting due to ARP: map gwX IP name to eth name 
config[A(srcA,nameB,item), lan1(ethX,srcA,dstB,item), B(srcB)] 
 -> delivery at gateway X 
config[A(srcA,nameB,item), X(pkt(srcA,dstB,item)), B(srcB)] 
 -> name rewriting due to route table lookup: map dstB to dstB 
 -> name rewriting due to ARP: map dstB IP name to eth name 
config[A(srcA,nameB,item), lan2(ethB,srcA,dstB,item), B(srcB)] 
 -> delivery at B 
config[A(srcA,nameB,item), B(srcB, pkt(srcA,dstB,item))] 
 -> delivery at application level: 
config[A(srcA,nameB,item), B(srcB,item)] # voila: the item was replicated through DNR

8

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

Name-ReWriting Service, the API
Name-Rewriting as an Abstract Data Type (ADT), basically a key-value store

class NaRW: # a name rewriting service, its interface

 def get(): # also called "lookup", "resolve", "compute"

 def put(): # also called "update", "define", "undefine"

 def items(): # also called "walk", "listdir"

DNS, BTC, etc are then subclasses, type refinements, interface implementors.

Goal of this “ADT talk” is to abstract away from the implementation details,  
define the ADT by its properties, not the implementation

9

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

Name-ReWriting Service, the API
Name-Rewriting as an Abstract Data Type (ADT), basically a key-value store

class NaRW: # a name rewriting service, its interface

 def get(): # also called "lookup", "resolve", "compute"

 def put(): # also called "update", "define", "undefine"

 def items(): # also called "walk", "listdir"

DNS, BTC, etc are then subclasses, type refinements, interface implementors.

Goal of this “ADT talk” is to abstract away from the implementation details,  
define the ADT by its properties, not the implementation

9

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

Name-ReWriting Service, the API

A potential DIN result: Name-ReWriting-as-a-Service  
spec.

Name-Rewriting as an Abstract Data Type (ADT), basically a key-value store

class NaRW: # a name rewriting service, its interface

 def get(): # also called "lookup", "resolve", "compute"

 def put(): # also called "update", "define", "undefine"

 def items(): # also called "walk", "listdir"

DNS, BTC, etc are then subclasses, type refinements, interface implementors.

Goal of this “ADT talk” is to abstract away from the implementation details,  
define the ADT by its properties, not the implementation

9

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

Implementing NaRW with two sub-services
Hypothesis: DIN will revisit these two services over and over

a) Persistent storage to store a new item (lookup(id) -> data)  
 take some CRUD database (create,read,update,delete), potentially append-only

b) head- (or “tip”) service -- points to the most recent versions of an item

The rest is chaining items to other items via hash pointers (= items’ intrinsic names)

Intuition:

 - GitHub, BlockChain (fuses a and b), IOTA’s tangle has multiple tips

 - DNS has/is only head-service, ICN offers only storage …

10

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

The sweet spot for scalability and trustlessness ?

11

DNS scales but:  
no history, trust-based,  

no auto-conflict resolution

BlockChain à la BTC: 
trustless, history, does  

not scale

persistent 
storage  
service

head- 
(“tip”) 

service

tangle-style, w/o consensus

—— medium guarantees —- —— strong guarantees -—

“Conflict-Free Replicated
Data Types” (CRDT): 
deterministic eventual
consistency without
consensus, hence

scalable

NaRW API (put,get,items)

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

The sweet spot for scalability and trustlessness ?

11

DNS scales but:  
no history, trust-based,  

no auto-conflict resolution

BlockChain à la BTC: 
trustless, history, does  

not scale

persistent 
storage  
service

head- 
(“tip”) 

service

tangle-style, w/o consensus

—— medium guarantees —- —— strong guarantees -—

“Conflict-Free Replicated
Data Types” (CRDT): 
deterministic eventual
consistency without
consensus, hence

scalable

NaRW API (put,get,items)
e.g. scalable key-value  
store with “observed 
removal semantics”, 
or a voting DIN, etc

DINRG Feb 17, 2018, Christian Tschudin: “Distributed Name Rewriting”

Questions

12

