Distributing Authenticated Mappings
Keys, policies, binaries, and more

Sydney Li¹, Colin Man², Jean-Luc Watson²

¹Electronic Frontier Foundation, ²Stanford University
Things that are broken on the internet
Things that are broken on the internet

- Two people having a private conversation over encrypted email
Things that are broken on the internet

- Two people having a private conversation over encrypted email
 Susceptible to MITM the key distribution source is untrusted
Things that are broken on the internet

- Two people having a private conversation over encrypted email
 Susceptible to MITM the key distribution source is untrusted
Things that are broken on the internet

- Two people having a private conversation over encrypted email
 Susceptible to MITM the key distribution source is untrusted

- Small website operator trying to provide secure internet service
Things that are broken on the internet

- Two people having a private conversation over encrypted email
 Susceptible to MITM the key distribution source is untrusted

- Small website operator trying to provide secure internet service
 Susceptible to downgrade attacks until they get onto HSTS-preload
Things that are broken on the internet

- Two people having a private conversation over encrypted email
 Susceptible to MITM the key distribution source is untrusted

- Small website operator trying to provide secure internet service
 Susceptible to downgrade attacks until they get onto HSTS-preload

- DNS
 DNSSEC yet to see widespread adoption
What the Internet needs
Authenticated mappings!

Problem
Name mappings
Policy mappings
Certificate mappings
Binary distribution
Public key mappings

I promise 35293cc9 is my public key!
<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name mappings</td>
<td>DNS (+ DNSSEC)</td>
</tr>
<tr>
<td>Policy mappings</td>
<td>HSTS preload lists</td>
</tr>
<tr>
<td>Certificate mappings</td>
<td>CA trust chains + CT</td>
</tr>
<tr>
<td>Binary distribution</td>
<td>package lists / bin. transparency</td>
</tr>
<tr>
<td>Public key mappings</td>
<td>Trusted keyservers</td>
</tr>
</tbody>
</table>
What the Internet needs
Authenticated mappings!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name mappings</td>
<td>DNS (+ DNSSEC)</td>
</tr>
<tr>
<td>Policy mappings</td>
<td>HSTS preload lists</td>
</tr>
<tr>
<td>Certificate mappings</td>
<td>CA trust chains + CT</td>
</tr>
<tr>
<td>Binary distribution</td>
<td>package lists / bin. transparency</td>
</tr>
<tr>
<td>Public key mappings</td>
<td>Trusted keyservers</td>
</tr>
</tbody>
</table>

Many solutions based on *incorrect assumptions of trust, aren’t scalable, or aren’t generalizable.*
Generalized Mappings

Instead, can we derive a scalable solution that will work for any mapping?
Generalized Mappings

Instead, can we derive a scalable solution that will work for any mapping?

Solution: infrastructure for a global state database
 - Append-only
Generalized Mappings

Instead, can we derive a scalable solution that will work for any mapping?

Solution: infrastructure for a global state database
- Append-only
- Well-formed transitions
Generalized Mappings

Instead, can we derive a scalable solution that will work for any mapping?

Solution: infrastructure for a global state database
- Append-only
- Well-formed transitions
- Transparent
Option 1: Bootstrapping Certificate Transparency

CT works well -- CAs cooperate!
- Let’s bootstrap binary transparency?
Option 1: Bootstrapping Certificate Transparency

CT works well -- CAs cooperate!
- Let’s bootstrap binary transparency?
 - Sure! Log binary hash into the CT log

Me too!
Option 1: Bootstrapping Certificate Transparency

CT works well -- CAs cooperate!
- Let’s bootstrap binary transparency?
 - Sure! Log binary hash into the CT log

Problems
- Why should CAs care about your binaries?
Option 1: Bootstrapping Certificate Transparency

CT works well -- CAs cooperate!
- Let’s bootstrap binary transparency?
 - Sure! Log binary hash into the CT log

Problems
- Why should CAs care about your binaries?
- How do CAs know how to enforce semantics for binaries?
Option 2: Byzantine Fault Tolerant Cluster

Set up a number of PBFT nodes and distribute mapping database.

- Enforce append-only and transition semantics via traditional consensus
- KeyNet
KeyNet

- Distributed key-value store for OpenPGP-standard keys
- Rerouted Mailvelope on the front end to sign and send emails
KeyNet

- Distributed key-value store for OpenPGP-standard keys
- Rerouted Mailvelope on the front end to sign and send emails
Option 2: Byzantine Fault Tolerant Cluster

Set up a number of PBFT nodes and distribute mapping database.

- Enforce append-only and transition semantics via traditional consensus
- No difference to the end user!
Option 2: Byzantine Fault Tolerant Cluster

Set up a number of PBFT nodes and distribute mapping database.

- Enforce append-only and transition semantics via traditional consensus
- No difference to the end user!

Problem: limited participation
- Uniform set of incentives undermines security
Option 3a: Proof-of-Work

Gets us almost there!
- We can create an append-only log
- Anyone can participate and enforce transition semantics
- Maturing technology
Option 3a: Proof-of-Work

Gets us almost there!
- We can create an append-only log
- Anyone can participate and enforce transition semantics
- Maturing technology

Problems
- No accountability
- Trust is tied to hash power
- Environmental cost
Option 3b: Proof-of-Stake

Even better!

- We can create append-only logs
- Anyone can participate and enforce transition semantics
- Environmentally-friendly
Option 3b: Proof-of-Stake

Even better!
- We can create append-only logs
- Anyone can participate and enforce transition semantics
- Environmentally-friendly

Problem: Yet another incentive mismatch: trust is tied to money
Option 4: Federated Byzantine Agreement

Combines safety guarantees of BFT with open membership of PoW/S schemes
- Allows actors with different interests to participate and enforce transition semantics
- Accountability
Option 4: Federated Byzantine Agreement

Combines safety guarantees of BFT with open membership of PoW/S schemes
- Allows actors with different interests to participate and enforce transition semantics
- Accountability

Trust in the network is tied to real-world relationships
- Rely on interdependence to ensure security
- Malicious behavior risks reputation
Open Problems

Bootstrapping and interoperability

Privacy

Scalable data structures

Defining well-formed updates (contract language)
Next Steps

How can DIN help?
- Infrastructure for authenticated mappings is moving forward independently, in parallel
- Generalize solution
 - diversity of incentives = everyone securing each other’s services
Next Steps

How can DIN help?
- Infrastructure for authenticated mappings is moving forward independently, in parallel
- Generalize solution
 - diversity of incentives = everyone securing each other’s services

Let’s standardize the way we distribute trust at scale:
1. Specs for describing transition semantics
2. A distributed protocol for enforcing these rules
Questions?