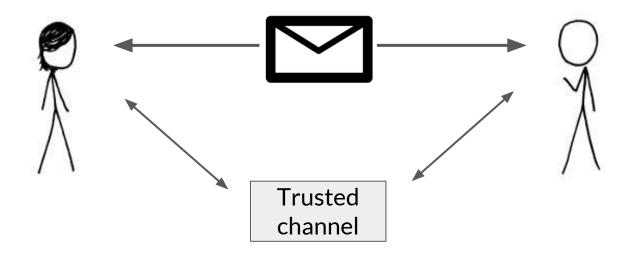
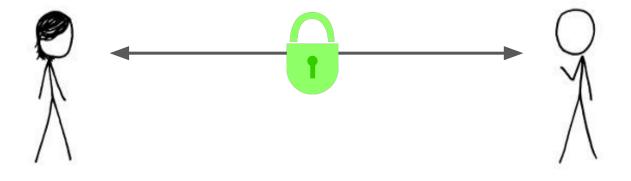
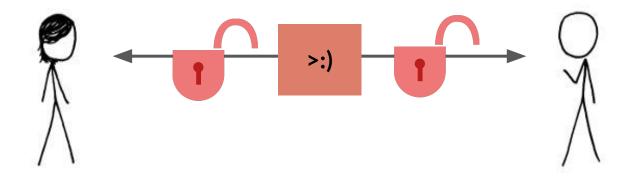

Distributing Authenticated Mappings Keys, policies, binaries, and more Sydney Li¹, Colin Man², Jean-Luc Watson²

¹Electronic Frontier Foundation, ²Stanford University


- Two people having a private conversation over encrypted email


- Two people having a private conversation over encrypted email Susceptible to MITM the key distribution source is untrusted


- Two people having a private conversation over encrypted email Susceptible to MITM the key distribution source is untrusted

- Two people having a private conversation over encrypted email Susceptible to MITM the key distribution source is untrusted
- Small website operator trying to provide secure internet service

- Two people having a private conversation over encrypted email Susceptible to MITM the key distribution source is untrusted
- Small website operator trying to provide secure internet service Susceptible to downgrade attacks until they get onto HSTS-preload

- Two people having a private conversation over encrypted email Susceptible to MITM the key distribution source is untrusted
- Small website operator trying to provide secure internet service Susceptible to downgrade attacks until they get onto HSTS-preload

- DNS

DNSSEC yet to see widespread adoption

What the Internet needs

Authenticated mappings!

Problem

Name mappings Policy mappings Certificate mappings Binary distribution Public key mappings

What the Internet needs

Authenticated mappings!

Problem

Name mappings Policy mappings Certificate mappings Binary distribution Public key mappings Solution DNS (+ DNSSEC) HSTS preload lists CA trust chains + CT package lists / bin. transparency Trusted keyservers

What the Internet needs

Authenticated mappings!

Problem

Name mappings Policy mappings Certificate mappings Binary distribution Public key mappings Solution DNS (+ DNSSEC) HSTS preload lists CA trust chains + CT package lists / bin. transparency Trusted keyservers

Many solutions based on incorrect assumptions of trust, aren't scalable, or aren't generalizable.

Instead, can we derive a scalable solution that will work for any mapping?

Instead, can we derive a scalable solution that will work for any mapping?

Solution: infrastructure for a global state database

- Append-only

Instead, can we derive a scalable solution that will work for any mapping?

Solution: infrastructure for a global state database

- Append-only
- Well-formed transitions

Instead, can we derive a scalable solution that will work for any mapping?

Solution: infrastructure for a global state database

- Append-only
- Well-formed transitions
- Transparent

CT works well -- CAs cooperate!

- Let's bootstrap binary transparency?

CT works well -- CAs cooperate!

- Let's bootstrap binary transparency?
 - Sure! Log binary hash into the CT log

CT works well -- CAs cooperate!

- Let's bootstrap binary transparency?
 - Sure! Log binary hash into the CT log

Problems

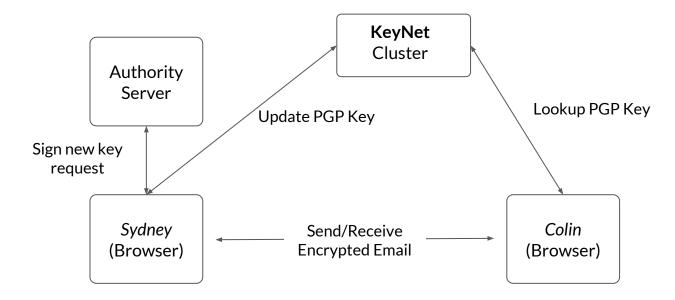
- Why should CAs care about your binaries?

CT works well -- CAs cooperate!

- Let's bootstrap binary transparency?
 - Sure! Log binary hash into the CT log

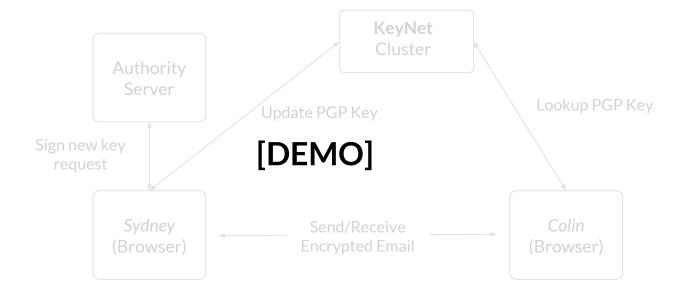
Problems

- Why should CAs care about your binaries?
- How do CAs know how to enforce semantics for binaries?


Option 2: Byzantine Fault Tolerant Cluster

Set up a number of PBFT nodes and distribute mapping database.

- Enforce append-only and transition semantics via traditional consensus
- KeyNet


KeyNet

- Distributed key-value store for OpenPGP-standard keys
- Rerouted Mailvelope on the front end to sign and send emails

KeyNet

- Distributed key-value store for OpenPGP-standard keys
- Rerouted Mailvelope on the front end to sign and send emails

Option 2: Byzantine Fault Tolerant Cluster

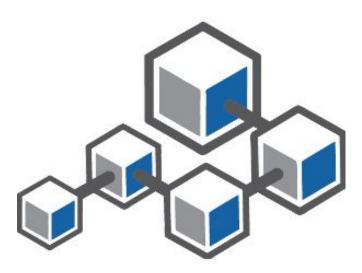
Set up a number of PBFT nodes and distribute mapping database.

- Enforce append-only and transition semantics via traditional consensus
- No difference to the end user!

Option 2: Byzantine Fault Tolerant Cluster

Set up a number of PBFT nodes and distribute mapping database.

- Enforce append-only and transition semantics via traditional consensus
- No difference to the end user!

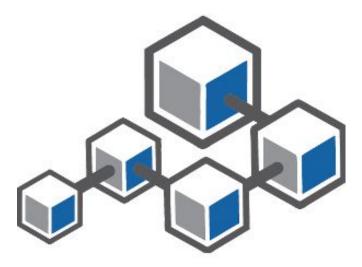

Problem: limited participation

- Uniform set of incentives undermines security

Option 3a: Proof-of-Work

Gets us almost there!

- We can create an append-only log
- Anyone can participate and enforce transition semantics
- Maturing technology


Option 3a: Proof-of-Work

Gets us almost there!

- We can create an append-only log
- Anyone can participate and enforce transition semantics
- Maturing technology

Problems

- No accountability
- Trust is tied to hash power
- Environmental cost

Option 3b: Proof-of-Stake

Even better!

- We can create append-only logs
- Anyone can participate and enforce transition semantics
- Environmentally-friendly

Option 3b: Proof-of-Stake

Even better!

- We can create append-only logs
- Anyone can participate and enforce transition semantics
- Environmentally-friendly

Problem: Yet another incentive mismatch: trust is tied to money

Option 4: Federated Byzantine Agreement

Combines safety guarantees of BFT with open membership of PoW/S schemes

- Allows actors with different interests to participate and enforce transition semantics
- Accountability

Option 4: Federated Byzantine Agreement

Combines safety guarantees of BFT with open membership of PoW/S schemes

- Allows actors with different interests to participate and enforce transition semantics
- Accountability

Trust in the network is tied to real-world relationships

- Rely on interdependence to ensure security
- Malicious behavior risks reputation

Open Problems

Bootstrapping and interoperability

Privacy

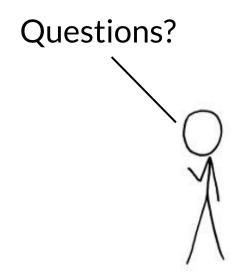
Scalable data structures

Defining well-formed updates (contract language)

Next Steps

How can DIN help?

- Infrastructure for authenticated mappings is moving forward independently, in parallel
- Generalize solution
 - diversity of incentives = everyone securing each other's services


Next Steps

How can DIN help?

- Infrastructure for authenticated mappings is moving forward independently, in parallel
- Generalize solution
 - diversity of incentives = everyone securing each other's services

Let's standardize the way we distribute trust at scale:

- **1.** Specs for describing transition semantics
- **2.** A distributed protocol for enforcing these rules

