

Sofie: Secure Open Federation of Internet Everywhere

George C. Polyzos

Mobile Multimedia Laboratory

Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business
Athens, Greece

```
polyzos@aueb.gr, https://mm.aueb.gr/
Tel.: +30 210 8203 650, Fax: +30 210 8203 325
```

Mobile Multimedia Laboratory

Outline

- Introduction
 - The Internet of Things: Vision & Status
 - IoT Challenges
 - Interoperability, Sustainability, Trust Model, Security, and Privacy
 - The role of Blockchains
- SOFIE: Secure Open Federation for Internet Everywhere
 - Motivation and Rationale
 - Use-cases and Trials
 - 4th Generation Platforms
- Conclusion and Outlook
- Blockchain-assisted Information Distribution

Internet of Things (IoT): Vision & Status

- Blurred boundaries between the cyber and physical worlds!
 - 2010: # Internet connected devices > Earth's population
 - "Connected devices" now include everyday home appliances
 - refrigerators, scales, TVs, ...
 - continuously decreasing manufacturing cost of sensors and actuators
 - new protocols for autonomous M2M communication
- Fragmentation & lack of security are the main issues today
- Most IoT: Vertically oriented, closed systems
 - Silos!

IoT Challenges

- Interoperability
- Sustainability
- Trust Model
- Security
- Privacy

The Interoperability Challenge

- well over 300 different Internet of Things (IoT) platforms
- several dozens ... standards
- different basic IoT communication protocols will co-exist
 - Constrained Application Protocol (CoAP)
 - Message Queue Telemetry Transport (MQTT)
 - HTTP
- most of the deployed IoT systems are closed
 - largely incapable of communicating with other IoT systems

The Sustainability Challenge

- How often do we change/update...
 - smartphone?
 - laptop?
 - car?
 - refrigerator?
 - house electronic infrastructure (security system)?
- Danger of fragmented ecosystems
 - composed of old and new devices
- In many scenarios Things are "deployed and forgotten"
 - sensors installed during the construction of a building
 - bio-signal detection inside the body of a patient or of a wild animal

The Trust Model Challenge

- IoT's biggest breakthrough/vision:
 seamless, "unattended" interaction
 between the cyber and the physical worlds
- A new trust model is needed to enable the interaction of all devices with little human intervention
- We need novel mechanisms for
 - transactions
 - compensation
 - accountability

The Security Challenge

- Existing security solutions cannot be directly applied to Things
 - Things are resource limited
 - no computational power for complex cryptographic operations
 - Things often (physically) exposed to malicious users.
 - Not always feasible to (remotely) connect to a Thing
- Things important/sensitive
 - can collect sensitive and personal information
 - may control critical aspects of our daily life
- Actuators, not only sensors
 - security even more critical... safety

The Privacy Challenge

- Things can collect personal and sensitive information
 - which may control critical aspects of our life
 - or the information obtained may impact our life
- Information from the IoT
 - can have significant context
 - be highly correlated...
- Because of the pervasive and invisible aspects of the IoT
 - information may be collected for a long time before it becomes known (and its impact felt)

Blockchains and Smart Contracts: part of the solution...

 Blockchain: "A distributed append-only ledger of transactions maintained by a number of (untrusted)
 Miners organized in a (distributed) network"

Distributed Ledger Technologies (DLTs)

- Smart contracts
 - Built on DLTs
 - Autonomous applications with pre-defined inputs and outputs
 ... that can be executed by a miner in a deterministic way
 - Any user can invoke a smart contract, the outcome of which is recorded as a transaction in the blockchain

SOFIE:

Secure Open Federation of Internet Everywhere

- Applying Distributed Ledger Technology (DLT)
 - e.g. blockchains
- to securely and openly federate IoT platforms
- with interconnected distributed ledgers to
 - build decentralized business platforms
 - support the interconnection of diverse IoT systems
 - provide openly accessible metadata about platforms
 - define business rules on how to connect to platforms
 - securely record audit trails to be used to resolve disputes

polyzos@aueb.gr

11

SOFIE: Overall Concept and Key Ideas

SOFIE

- The concept will be prototyped and studied in an EU Horizon 2020 funded project
 - 1/1/2018 31/12/2020
 - €4.5M

Partners

- Aalto University, Ericsson, Rovio (Finland)
- Guardtime (Estonia)
- AUEB, Synelixis, Optimum (Greece)
- Eng, Asm Terni Spa, Emotion Srl (Italy)

SOFIE's Federation Architecture

SOFIE's Decentralized Management System using Blockchains

Guardtime's Keyless Signatures' Infrastructure (KSI)

- Permissioned ledger
- In production since April 2008
- Each block is the root of a Merkle tree
- The leafs of the tree are hashes of documents
- Formally verified
- Once per month: current block is published in the FT

Ahto Buldas and Andres Kroonmaa and Risto Laanoja, Keyless Signatures' Infrastructure: How to Build Global Distributed Hash-Trees, Cryptology ePrint Archive: Report 2013/834

SOFIE's Energy I Pilot: Smart Meters (Estonia)

SOFIE's Energy II Pilot: Electricity Marketplace (Italy)

SOFIE's Food-Chain Pilot

SOFIE's Mixed-Reality Gaming Pilot

Conclusions

- Blockchains will be critical enablers for the IoT
 - they will enable
 - unattended operation the heart of the IoT through
 - automatic contract enforcement
 - trust between devices with unplanned interactions
 - decentralized payments
- Major challenges remain
 - performance issues
 - real-world events not directly verifiable for smart contracts
 - sustainability & business issues
 - blockchains record transactions "in the open"
 - privacy issues
 - some data can be recorded encrypted
 - what?
 - how to pass on keys to unplanned future parties?

...

Thank you!

George C. Polyzos

Mobile Multimedia Laboratory

Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business
Athens, Greece

http://mm.aueb.gr/
polyzos@aueb.gr

Workshop on Decentralized IoT Security

- Network and Distributed System Security Symposium
 - San Diego, CA, USA
 - February 18-21, 2018

https://www.ndss-symposium.org/

- Workshop: 18/02/2018
 - Abstract: 01/12/2017
 - Paper: 08/12/2017

http://www.ndss-symposium.org/ndss2018/cfp-ndss2018-diss/

Organizers

- Carsten Bormann, Universität Bremen
- Dirk Kutscher, Huawei German Research Center
- Michael McCool, Intel
- Pekka Nikander, Aalto University
- George C. Polyzos, AUEB
- Thomas C. Schmidt, Hamburg U. of A.Sc.
- Matthias Wählisch, Freie Universität Berlin

Enabling secure interoperability across IoT ecosystems

- Applying blockchains and Distributed Ledger Technology to IoT infrastructure
- Security and availability in multi-tiered IoT edge networks ("fog computing")
- Peer-to-Peer security and privacy (P2P) in IoT
- Decentralized trust and rights management, including access control
- Decentralized authentication and access management at the IoT edge

Security and privacy in ongoing IoT standardisation work

Other topics

- Security and privacy trade-offs related to IoT scalability and decentralization
- Secure Service provisioning and migration in IoT
- Sensor and Actuator Key Management and other Security Protocols
- Smart Contracts for IoT, including formal verification of smart contracts
- Usable security for decentralized IoT

Selected Publications

- Nikos Fotiou et al., "ICN enabling CoAP Extensions for IP based IoT devices," Proc. ACM ICN, Berlin, Germany, September 2017 (Best Demo Award).
- G.C. Polyzos & N. Fotiou, "Blockchain-assisted Information Distribution for the Internet of Things,"
 Proc. Workshop on Information Integration in Cyber Physical Systems w/ IEEE International Conference
 on Information Reuse and Integration, San Diego, CA, USA, August 2017.
- N. Fotiou, et al., "Edge-ICN and its application to the Internet of Things," Proc. Workshop on Information-Centric Fog Computing w/ IFIP TC6 Networking Conference, Stockholm, Sweden, June 2017.
- N. Fotiou & G.C. Polyzos, "Decentralized Name-based Security for Content Distribution using Blockchains," Proc. IEEE INFOCOM Workshops, San Francisco, CA, USA, April 2016.
- G.C. Polyzos & N. Fotiou, "Building a Reliable Internet of Things using Information-Centric Networking," Journal of Reliable Intelligent Environments, Springer, vol. 1, no. 1, July 2015.
- N. Fotiou & G.C. Polyzos, "Enabling NAME-based security and trust," Proc. IFIP International Conference on Trust Management, Hamburg, Germany, May 2015.

Horizon 2020

INTER-IoT/ACHILLES: Access Control and autHenticatIon deLegation for interoperabLE IoT applicationS

Blockchains contribute to system sustainability

- resistant against cyber attacks, secure
- many critical operations of an IoT system can be delegated to or realized with blockchains
 - using smart contracts
- end-points can be "dumb"

 inter-ledger technology can provide long-term sustainability across DLTs

Blockchains enable new Trust Models

Blockchains are built around transactions

- The mapping of blockchain's digital coin to the physical world is application specific:
 - Real money
 - Domain name
 - Actuation
 - Transfer of electricity
 - **•** ...

Provenance Verification & Information Tracking

Smart contract:

- input: authorized user identities
- output: payment receipt

Identification and Trust Management

N. Fotiou and G.C. Polyzos, "Decentralized name-based security for content distribution using blockchains," Proc. IEEE INFOCOM Workshops, San Francisco, CA, April 2016.

Blockchain-assisted Information Distribution

- The getaway can sign information on behalf of the thing
 - and perhaps store it in the blockchain
- The corresponding public key can also be on the blockchain