
CCN-lite, PiCN, PyCN-lite – a growing family

CCN-lite 2011–2016: C, NDN+CCNx+, hackish, no tests

CCN-lite since 2016: still C! In very good shape (integration tests),
has moved closer to RIOT

PiCN since 2017: Python, finally.
Solid (=heavy?) software engineering, see the following slides

PyCN-lite since 2018: Python, but lite and hackish.
see the following slides, too

A) PiCN – Python ICN https://github.com/cn-uofbasel/PiCN

ICNRG interim meeting, UCL
March 18, 2018

Chris Scherb
Claudio Marxer
(Christian Tschudin)

PiCN Project Goals

Prototyping-friendly, extensible library and a set of tools.

+ Multi packet format
+ NDN/CCN-core logic and

data structs
+ Advanced: NFN, FLIC,

security protocols, . . .

– Python 3.6+
– BSD-3-Clause

– Layered/stacked architecture
– Modular structure within each layer

– Well-defined interfaces...
.. between layers.
.. for modules.

⇒ Plug-in custom modules or replace
entire layers.

3

PiCN Architecture

Link Layer
 Face Management

Packet Encoding
 Wireformat ↔ Python Objects

Tools
 picn-peek ..

Network Layer
 FIB, PIT, CS, Fwd

NFN Layer
 Comp+Orchestration

Nodes
 picn-relay

Apps
 Your project?

Chunking
 FLIC, ...

4

PiCN Architecture

Link Layer
 Face Management

Packet Encoding
 Wireformat ↔ Python Objects

NDN-TLV
Encoder

CCNx
Encoder

UDP Face
Handler

...

Wifi Face
Handler

Tools
 picn-peek ..

Network Layer
 FIB, PIT, CS, Fwd

NFN Layer
 Comp+Orchestration

Nodes
 picn-relay

Apps
 Your project?

... 802.15.4 Face
Handler

Generic Fwd
Manager

...
Generic PIT

Generic FIB

Generic CS

CCN-LoWPAN
Encoder

Basic Rewrite
Strategy

...

Chunking
 FLIC, ...

4

PiCN Software Status
Nodes & Tools
3 picn-relay

3 picn-peek

3 picn-mgmt

3 picn-setup

(3) Next-gen NFN
7 FLIC repo

Security
7 PKI, Signing, Verification
... this is a playground!

Link Layer
3 UDP
7 WebSocket
7 IEEE 802.11, 802.15.4

Packet Encoding
(3) NDN + NDNLPv2
7 CCNx
7 CCN-LoWPAN

Network Layer
3 Basic forwarding logic
7 Improved forwarding strategies

5

Lines: 6000+
Tests: 229

B) PyCN-lite – MicroPython ICN

ICNRG interim meeting, UCL
March 18, 2018

Christian Tschudin

PyCN-lite Project Goals

LITE, LITE, LITE! IoT-friendly despite Python

– Fast develop-debug cycles for
higher-layer experiments (RPC, FLIC)

– Avoid bleeding edge (Python3.6 in PiCN):
PyCN-lite uses MicroPython and plain Python3

– Avoid classitis: “OS-style” code:
better few+deep classes than many+thin ones . . .

7

PyCN-lite Architecture – comparison to PiCN
Software architecture? Let the classes speak. Class count:

PiCN (NFN, tests, only NDN) > 150
PyCN-lite (no NFN, no tests) < 40

(John Ousterhout, Stanford)

8

PyCN-lite on a constraint IoT device (NodeMcu)

– NodeMcu/ESP8266: 96KB
RAM, 28KB left for apps

– dual WiFi !
uplink, and access point

– MicroPython (subset of
Python3)

– sufficient RAM to run a
NDN fwd (no CS) and a repo

9

PyCN-lite Software Status

Nodes & Tools
3 pkt dump

3 fetch (peek)

3 repo

3 fwd

3 FLIC

Link Layer
3 UDP
7 raw 802.11, 802.15.4

Packet Encoding
3 NDN
3 CCNx
3 CBOR
7 CCN-LoWPAN
3 sexpr for marshalling

(currently for NDN and CBOR)

Transport
3 bidirectional streaming RPC

10

Lines: 3500+
Tests: 0

Contributions, testing, feedback, questions are highly welcome!

à https://github.com/cn-uofbasel/CCN-lite

à https://github.com/cn-uofbasel/PiCN

à https://github.com/cn-uofbasel/PyCN-lite

11

https://github.com/cn-uofbasel/CCN-lite
https://github.com/cn-uofbasel/PiCN
https://github.com/cn-uofbasel/PyCN-lite

Backup Slide: RPC (work in progress)

Q: Where is the “publish” method?

It’s crucial/urgent/essential/important to provide publish() functionality, even before
forwarding (think “IoT device wanting to persist its measurements”)

– Layer the publish() method on top of a generic RPC (instead of point-solution)
– Get inspired by service definitions in gRPC:

s e r v i c e ICNnode {
r p c lo o k u p (st ream I n t e r e s t) r e t u r n s (st ream Data) ;
r p c t r a v e r s e F L I C (Name) r e t u r n s (st ream Data) ; # edge computing !
r p c p u b l i s h (st ream Data) r e t u r n s (s t ream Retcode) ;
r p c r e s o l v e (NFNexpr) r e t u r n s (s t ream M a n i f e s t) ;

}

– All packets (will be) encrypted: setup/handshake copied from HIP (RFC 7401)

12

