CCN-lite, PiCN, PyCN-lite — a growing family

CCN-lite 2011-2016: C, NDN+CCNx+, hackish, no tests

CCN-lite since 2016: still C! In very good shape (integration tests),
has moved closer to RIOT

PiCN since 2017: Python, finally.
Solid (=heavy?) software engineering, see the following slides

PyCN-lite since 2018: Python, but lite and hackish.
see the following slides, too

A) PiCN — Python ICN https://github.com/cn-uofbasel/PiCN

ICNRG interim meeting, UCL
March 18, 2018

Chris Scherb
Claudio Marxer
(Christian Tschudin)

’ Prototyping-friendly, extensible library and a set of tools.

+ Multi packet format — Layered/stacked architecture

+ NDN/CCN-core logic and — Modular structure within each layer
data structs

+ Advanced: NFN, FLIC, — Well-defined interfaces...

. between layers.

security protocols, ...
.. for modules.

Python 3.6+ = Plug-in custom modules or replace
BSD-3-Clause entire layers.

PiCN Architecture

NFN Layer Nodes Apps
Comp+Orchestration picn-relay Your project?
Tools Chunking Network Layer
picn-peek .. FLIC, ... FIB, PIT, CS, Fwd

Packet Encoding

Wireformat ~ Python Objects

Link Layer

Face Management

PiCN Architecture

NFN Layer . gasicrewite | | Nodes Apps
Comp+Orchestration | Strategy picn-relay Your project?
Tools Chunking Network Layer ‘Generic Fwd|
picn-peek .. FLIC, ... FIB, PIT, CS, Fwd _,,M?hfg,e,,r,,,
Packet Encoding {CCN-LOWPAN: : CCNx || NDN-TLV .
Wireformat ~ Python Objects L EnCOder 777777 .+ Encoder | = Encoder
Link Layer 1802.15.4 Face | Wifi Face | | UDP Face |
Face Management ! Handler {{ Handler :i Handler

Lines: 6000+

PiCN Software Status Testss 220
Nodes & Tools Link Layer
v/ picn-relay v UDP
v/ picn-peek X WebSocket
v/ picn-mgmt X |EEE 802.11, 802.15.4

v picn-setup
(V) Next-gen NFN
X FLIC repo

Packet Encoding
(v) NDN + NDNLPv2
X CCNx

Security X CCN-LoWPAN

X PKI, Signing, Verification Network Layer

is i |
- this is a playground! v/ Basic forwarding logic

X Improved forwarding strategies

B) PyCN-lite — MicroPython ICN

ICNRG interim meeting, UCL
March 18, 2018

Christian Tschudin PY‘ N .

UNDER DEVELOPMENT

WARNING

WORK IN PROGRESS

‘ LITE, LITE, LITE! loT-friendly despite Python

— Fast develop-debug cycles for
higher-layer experiments (RPC, FLIC)

— Avoid bleeding edge (Python3.6 in PiCN):
PyCN-lite uses MicroPython and plain Python3

— Avoid classitis: “OS-style” code:
better few+deep classes than many+thin ones . ..

C

Classes should be Thick

Interface: everything that
must be known to users

Class
Thin Class
Thick Class

Useful functionality
provided by class
Reform
«On the Criteria tobe U

Parnas paper:

ulation of classic
osing Systems into Modules”

sed in Decomp

o+ rogrammers be Taught?

Slide 6

(John Ousterhout, Stanford)

NETWORKING

uplink to the NDN
testbed (wiFi, 1)

e

» ESP8266, price < USD 5
ICN-enabled IoT devices

— NodeMcu/ESP8266: 96KB — MicroPython (subset of
RAM, 28KB left for apps Python3)
— dual WiFi ! — sufficient RAM to run a

uplink, and access point NDN fwd (no CS) and a repo

Nodes & Tools

v

NN NS

pkt dump
fetch (peek)
repo

fwd

FLIC

Link Layer

v
X

UDP
raw 802.11, 802.15.4

Lines: 3500+
Tests: 0

Packet Encoding
v NDN
v/ CCNx
v CBOR
X CCN-LoWPAN

v sexpr for marshalling
(currently for NDN and CBOR)

Transport
v Dbidirectional streaming RPC

10

Contributions, testing, feedback, questions are highly welcome!

m https://github.com/cn-uofbasel/CCN-1lite

w https://github.com/cn-uofbasel/PiCN

m https://github.com/cn-uofbasel/PyCN-lite

11

https://github.com/cn-uofbasel/CCN-lite
https://github.com/cn-uofbasel/PiCN
https://github.com/cn-uofbasel/PyCN-lite

Q: Where is the “publish” method?

It's crucial /urgent/essential /important to provide publish() functionality, even before
forwarding (think “loT device wanting to persist its measurements”)

— Layer the publish() method on top of a generic RPC (instead of point-solution)

— Get inspired by service definitions in gRPC:

service ICNnode {

rpc
rpc
rpc
rpc

}

lookup(stream Interest)
traverseFLIC (Name)
publish (stream Data)
resolve (NFNexpr)

returns
returns
returns
returns

(
(
(
(

stream
stream
stream
stream

Data);

Data); # edge computing!
Retcode);

Manifest);

— All packets (will be) encrypted: setup/handshake copied from HIP (RFC 7401)

12

