
Revised	draft:
"File-Like	ICN	Collection	(FLIC)"

ICNRG	interim	meeting,	UCL
March	18,	2018

<christian.tschudin@unibas.ch>



In	this	presentation

a)	FLIC	in	one	picture

b)	Different	motivations	why	people	may	use	FLIC:
packet	trains		vs huge	data	collections

c)	Four	motivations	for	a	revised	draft:
1. Encoding	strategies
2. Separate	DEK	and	SEK			(Data	vs	Structure	Encryption	Key)
3. Implementation	complexity	of	FLIC	encoding
4. Implementation	complexity	of	FLIC	decoding



a)	FLIC	in	one	picture

• Large	data	is	cut	into	chunks,	persisted	independently
• Manifest packets contain:	metadata,	index	table(s),	signature.	Are	also	persisted.
• Index	table	contains	“hash	pointers”	(incl intrinsic	name	of	data		or	manifest	chunk)
• Manifests	as	an	alternative	to	chunk	naming,	even	have	“name-less	objects”

Data0 Data1 Data2 Data3

Manifest0

Manifest1



b)	Differences	in	why	people	may	use	FLIC

• Transient	use:
- send	several	signature-less	data	chunks
- manifest	with	a	single	signature	covers	all	chunks,	less	run-time	effort

• Permanent	use:
- ICN	as	a	global	block	storage	service	(PDU	==	block)
- large	data	collections	then	mapped	to	ICN	blocks
- collection	examples:
a	file,	DB	table,	append-only	log,	other	hash-chained	data	structures



c.1)	Revision	b/c	of	encoding	strategies
Seminar	students	pointed	out	that	B-trees	are	better	(than	a	transport-
optimized	manifest	encoding)	for	storing	video: we	want	to	“seek”
• “transport-optimized”	means:
A	manifest	has	multiple	data	pointers	to	fetch
before	one	has	to	fetch	another	manifest

Goal	for	draft:	better	describe	trade-offs	and	preferences	for	tree	shapes.

top	manifest

This	shape	forces to	fetch	
all	manifests	before
being	able	to	access
the	first	chunk.

top	manifest

Immediate	access	to	first	chunk,	we
can	pre-fetch	2nd manifest	in	parallel.



c.2)	Separate	DEK	and	SEK

End-to-end	encryption	and	access	control	in	ICN:
• source	encrypts	content with	a	DEK	(data	encryption	key)
• access	is	controlled	by	selectively	handing	out	the	DEK

Should	manifest	packets	be	encrypted,	too?
àUse	a	different	SEK	(structure encryption	key)
• Permits	to	delegate	operations	on	the	tree	to	third	parties,	edge	nodes,
without	exposing	the	(DEK-protected)	data

Goal	for	draft:	introduce	SEK,	perhaps	also	“ptr to	encrypted	manifest”



c.3)	Encoding	complexity	(shape	of	the	tree)

From	PyCN-lite:	easy	to	write	a	default tree	encoder

But encoder	needs	data	structure	awareness:

• “log	file”	case:	append-only	of	text	lines
bad:	append	a	new	manifest	to	old	manifest,	plus	link	to	new	line

good:	 transport-friendly	reshaping of	the	previous	tree

(WITHOUT	link	to	the	previous	manifest!)

Goal	for	draft:	better	discussion	of	encoding	strategies,	data	structure	awareness



c.4)	Decoding	complexity	(metadata)

How	useful	are	the	proposed	FLIC	metadata	fields?	Ex:	pos and	#	of	bytes	in	a	sub-tree

Became	wary	when	writing	FLIC	decoders	(=	tree	traversers):	packets	control	my	effort.
- accidentally	wrong	metadata	(byte	position	for	seeking	MUST	be	accurate)
- deliberate	wrong	metadata

“Be	conservative	in	what	you	send,	be	liberal	in	what	you	accept”

a. Drop	most	of	metadata?	
(Manifest	consumer	has	to	verify	a	lot,	has	to	guard		against	DoS attacks	- at	the	end	
the	SW	is	perhaps	not	better	off,	compared		to	not	having	this	information	at	all.)

b. Introduce	"attestation"	of	manifest	content,	by	third	parties?

Goal	for	draft:	eliminate	all	metadata	fields	having	usefulness	concerns.


