Revised draft:
"File-Like ICN Collection (FLIC)"

ICNRG interim meeting, UCL
March 18, 2018

<christian.tschudin@unibas.ch>

In this presentation

a) FLIC in one picture

b) Different motivations why people may use FLIC:
packet trains vs huge data collections

c) Four motivations for a revised draft:
1. Encodingstrategies
2. Separate DEK and SEK (Data vs Structure Encryption Key)
3. Implementation complexity of FLIC encoding
4. Implementation complexity of FLIC decoding

d

Manifestl

) FLIC in one picture

ManifestO

Large data is cut into chunks, persisted independently

Manifest packets contain: metadata, index table(s), signature. Are also persisted.
Index table contains “hash pointers” (incl intrinsic name of data or manifest chunk)
Manifests as an alternative to chunk naming, even have “name-less objects”

b) Differences in why people may use FLIC

* Transient use:
- send several signature-less data chunks
- manifest with a single signature coversall chunks, less run-time effort

* Permanent use:
- ICN as a global block storage service (PDU == block)
- large data collections then mapped to ICN blocks
- collection examples:
a file, DB table, append-only log, other hash-chained data structures

c.1) Revision b/c of encoding strategies

Seminar students pointed out that B-trees are better (than a transport-
optimized manifest encoding) for storing video: we want to “seek”

* “transport-optimized” means:
A manifest has multiple data pointers to fetch
before one has to fetch another manifest

top manifest

Goal for draft: better describe trade-offs and preferences for tree shapes.

© o
top manifest QOO 5‘0(“’60 See\k\
‘% '\6
6 as9%") \ A
o < \ 0(\
(Y« %O
N\ &O‘
‘0“‘ This shape forces to fetch

all manifests before

Immediate access to first chunk, we being able to access

can pre-fetch 2" manifest in parallel. the first chunk.

c.2) Separate DEK and SEK

End-to-end encryption and access controlin ICN:
e source encrypts content with a DEK (data encryption key)
* access is controlled by selectively handing out the DEK

Should manifest packets be encrypted, too?
- Use a different SEK (structure encryption key)

* Permits to delegate operations on the tree to third parties, edge nodes,
without exposing the (DEK-protected) data

Goal for draft: introduce SEK, perhaps also “ptr to encrypted manifest”

c.3) Encoding complexity (shape of the tree)

From PyCN-lite: easy to write a default tree encoder

But encoder needs data structure awareness:

* “log file” case: append-only of text lines
bad: append a new manifest to old manifest, plus link to new line
good: transport-friendly reshaping of the previous tree

(WITHOUT link to the previous manifest!)

Goal for draft: better discussion of encoding strategies, data structure awareness

c.4) Decoding complexity (metadata)

How useful are the proposed FLIC metadata fields? Ex: pos and # of bytes in a sub-tree

Became wary when writing FLIC decoders (= tree traversers): packets control my effort.
- accidentally wrong metadata (byte position for seeking MUST be accurate)
- deliberate wrong metadata

“Be conservative in what you send, be liberal in what you accept”

a. Drop most of metadata?
(Manifest consumer has to verify a lot, has to guard against DoS attacks - at the end

the SW is perhaps not better off, compared to not having this information at all.)

b. Introduce "attestation" of manifest content, by third parties?

Goal for draft: eliminate all metadata fields having usefulness concerns.

