

Hybrid Information-Centric Networking ICN inside the Internet Protocol

Luca Muscariello, Principal Engineer

Giovanna Carofiglio, Distinguished Engineer

Jordan Augé, Michele Papalini, Mauro Sardara, Alberto Compagno

ICNRG Interim Meeting, London, 18th of March 2018

Outline

- Motivation
- Naming data with IPv6
- The network architecture
- Application support

Motivation

- Insert ICN into the Internet Protocol
- Evolutionary implementation
- Shorter time to deployment
- Minimize standardization effort
- Minimize clean-slate work in routers and end-hosts
- · Possibility to fall back to IP at run time
- Enable hybrid deployment and interconnection of IP and hICN
- hICN as an overset of IP

Name prefixes in IPv6 numbers

Naming data with the Internet Protocol

- Definitions:
 - Name prefix: encoded as an IPv6 128 bits word and carried in IPv6 header fields
 - Name suffix: encoded in transport headers fields such as TCP
 - Name: hierarchical concatenation of name prefix and suffix

	bits	48 (or >)	16(or <	:)	64	
	fields	Routing prefix	Subnet		Interface id	
-	bits	64		64		
	fields	Routing prefix		Resource prefix		
				(

Name prefix in AF_HICN

IPv6 prefixes for data names


- It is an open problem to determine which IPv6 prefixes should be used as name prefixes: several options are possible.
- It is desirable to be able to recognize that an IPv6 prefix is a name prefix, e.g. with an address family
- However this can be determined and distributed by a control plane to configure routers


- 1. a new IPv6 address family AF_HICN, b0001::/16
- 2. Let the management and control plane to locally configure HICN prefixes and announce them to neighbors for interconnection. A prefix owner can reuse existing prefixes
- 3. Other solutions...

Packet format

Packet format: two protocol data units

- The protocol semantic is request/reply
- Two protocol data units: Interest/Data
- Interest is used to query Data with a 1:1 match
- The semantics are unchanged w.r.t. NDN/CCN

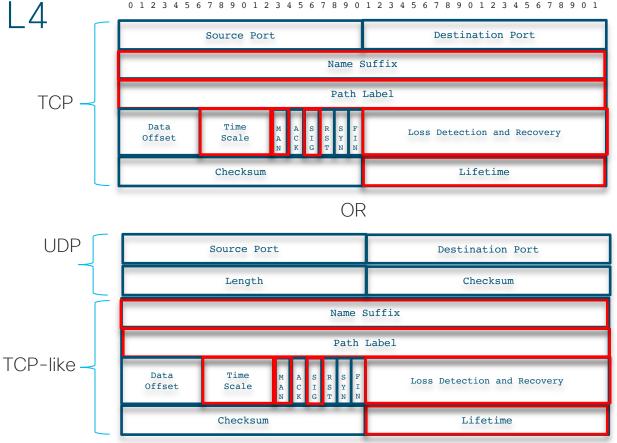
Packet format L3

- The name prefix is stored in the DST address field to exploit IP routing/forwarding of the requests
- The name prefix is stored in the SRC address field as replies are not routed by name
- SRC and DST in Interest/Data are valid IPv6 addresses (locators), i.e. identifiers of network interfaces

Traffic Class Flow Label Version Payload Length Next Header Hop Limit Source Address Name Prefix for Data Packets Destination Address Name Prefix for Interest Packets

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

Packet format L4

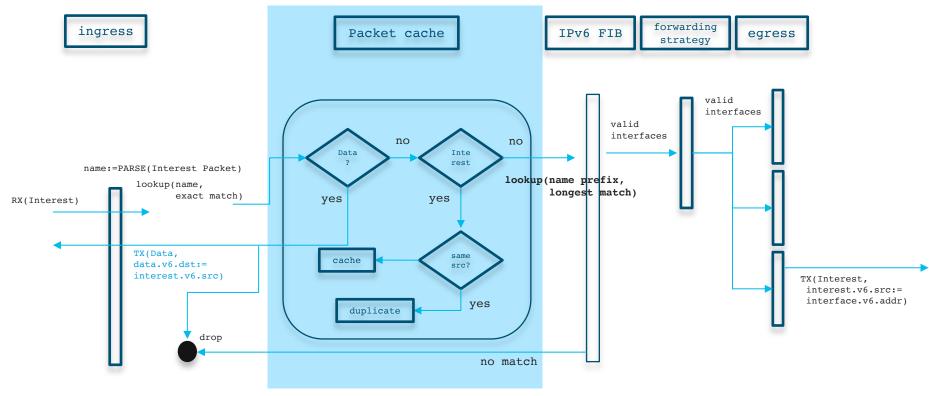

- Use the TCP header
- Could also use other L4 headers
- Keep src/dst ports

But also UDP header to

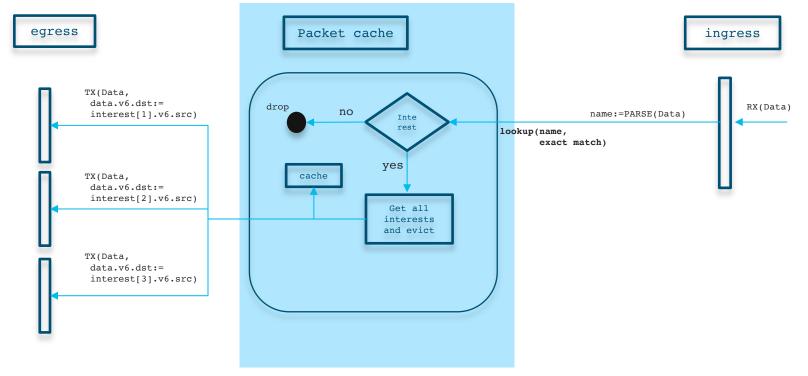
carry a hICN L4 header

• E.g. for HTTP

• E.g. for RTP

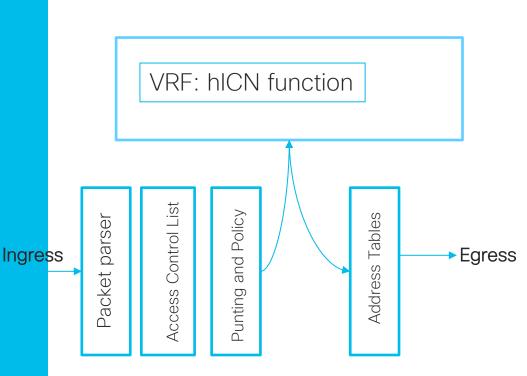

Security: authentication and integrity

- Authenticity and Integrity provided by using crypto signatures
- Two signature envelops: a single data packet or the transport manifest
- In the first case the signature is carried by the IP authentication header
- In the second case the transport manifest is the only signed unit
- Definition of L4 Manifest
 - A low level index of names of a collection of data packets
 - Carries hashes of data for integrity
 - Carries the signature of the manifest for authentication


L3 Header	L3 Header
L4 Header	L4 Header
AH Header	L4 Manifest
Payload	Data Packet
Data Packet	

Forwarding path

hICN protocol semantics: the interest path



hICN protocol semantics: the data path

Punting

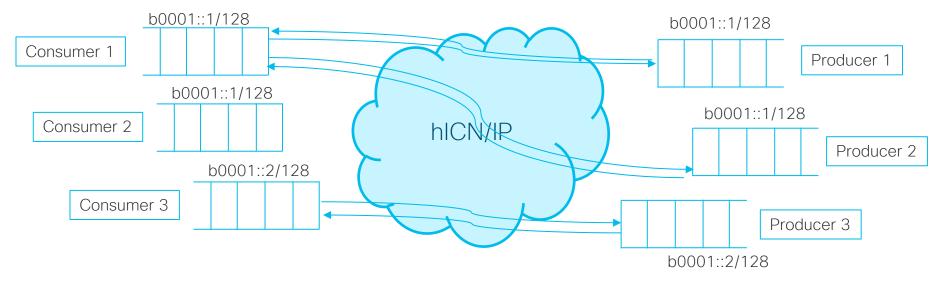
- hICN traffic requires a punting rule
- Has to be efficient and easy to manage
- AF_HICN putting using ACL
- Explicitly flag hICN traffic, how?
 Port numbers?

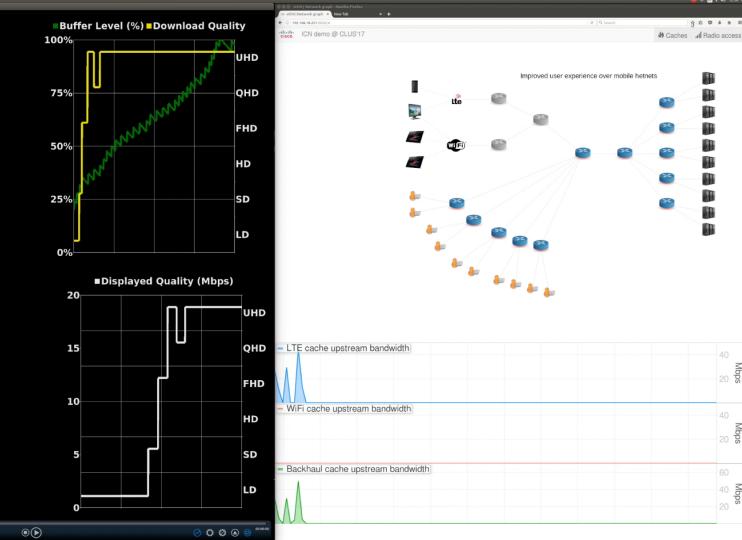
Application Support

Transport Layer and Socket API

- An INET like Socket API
- Unidirectional sockets: producer and consumers
- Socket identifiers based on name prefixes
- Segmentation and signature computation at the producer
- Reassembly and signature verification at the consumer
- DATAGRAM or STREAM transport
- Reliable or unreliable
- Support of current applications: HTTP, RTP

DASH, RTC HTTP, RTP				
IP	hICN			


Consumer/Producer Socket


Consumer

- Unidirectional socket to fetch data into a receive buffer
- · The socket buffer binds to a name prefix

Producer

- Unidirectional socket to publish data into a send buffer
- The socket buffer binds to a name prefix

2 ······ $\bullet \bullet$

Conclusion

- It is possible to deploy ICN now using hICN
- Reduced time to market
- No tradeoffs in terms of ICN features
- Prototype available at Cisco with focus on HTTP and RTP

ılıılı cısco