Requirements for Key Management Schemes in CCN/NDN

Ruidong Li, Hitoshi Asaeda
National Institute of Information and Communications Technology (NICT)
Outline

• Content-Centric Network/Named Data Network
• Key Management (KM) Scheme
• Related Work
• Network Operations and Use Scenarios
• KM Requirements for CCN/NDN
• Our Related Work
Content-Centric Network/Named Data Network

• Pulling based data retrieval
• Name-based interest/data forwarding

How to enable users to trust data?
Only Signature is not enough

- How to get the trustable key for validation?

Key Management (KM) Scheme should be provided parallelly if signature or other cryptographic mechanism is used.

[1] CCNx Messages in TLV Format, draft-irtf-icnrg-ccnxmessages-06
Key Management Scheme

- **KM Scheme**: Manage the cryptographic keys throughout their lifecycles to establish and maintain the trust among entities for protecting system.

- It includes the procedures for the generation, delivery, storage, protection, update and revocation of cryptographic keys or certificates.
 - P1 (Key Generation), P2 (Key Agreement), P3 (Key/Certificate Delivery), P4 (Key/Certificate Revocation), P5 (Key Storage), P6 (Key/Certificate Update), P7 (Key Backup), P8 (Compromise Recovery)

- The systems to be protected
 - CCN/NDN infrastructure and network operations
CCN/NDN Operations (to be protected)

Entities:
Consumer, Router, Copy holder, Publisher

• **Violating trust of consumers** (Malicious data-request attacks): Impersonate consumers to create a flood of interests

• **Violating trust of copy holders** (data poisoning attacks): Impersonate copy holders (e.g., routers or publishers) to provide fake data.

• *(Severe: Quickly pollute the router caches as the virus spreads, because routers cache the fake data, redistribute them, and other intermediate routers re-cache them.)*
US1: Disaster Networking

• [2]: List the Emergency Support and Disaster Recovery as one of ICN Baseline Scenarios

• [3]: Outline the research directions for using ICN in disaster scenario.

• Features: Server down, in-network caching enabling movable data, fragmented networks

• Violating trust of publisher or data provider:
 • For one fragmented network: Deliberately disseminate or exchange the fake information to common users.
 • For several fragmented networks: Impersonate publisher/copy holder of other fragmented network to disseminate fake information for different fragmented networks

[3] Research Directions for Using ICN in Disaster Scenarios, draft-irtf-icnrg-disaster-03
US2: Video Streaming

- [2]: List real-time communication scenario including video transmission as one of ICN Baseline Scenarios
- [4]: Adaptive video streaming over ICN

Features: Stricter requirements on QoE, low delay for the consumer, group communication, and in-network caching video data improving transmission performance

Violating trust of consumer: Impersonate the consumers with right to retrieve data

Violating forward and backward trust: The consumer can illegally get the previous data when she newly joins a video service. Also she can illegally continue to retrieve the data even her key has expired.

US3: Internet of Things

- [2]: List Internet of Things as one of ICN Baseline Scenarios
- [5]: Apply information-centric network to IoT
- **Features**: resource-constrained devices, heterogeneity on the underlay networks and operators, privacy, in-network caching helps fast data sharing
- **Violating trust of publisher, consumer, router**: impersonate sensor to publish data, impersonate routers to provide data, impersonate consumer to collect data

Existing Key Management Schemes

• **Kerberos** – Symmetric key management relying on centralized server
• **MSEC** – Group key management relying on centralized server
• **X.509** – Public key certificate management relying on centralized servers
• **PGP** – Public key certificate management relying on introduction and trust chain
• **RPKI** – Protect the DNS system

Problems:
- **Service mismatch**: Authenticate one specific entity based on end-to-end communication paradigm vs. Authenticate unpredictable entity with data based on data-centric communication paradigm
- **Delay enlargement problem**: Need additional procedure(s) to request key/certificate for authentications
Requirements for protecting network operations

- **R1 (Data-centric design)**: Any router or consumer can easily authenticate the data, publisher, and copy holder, and any copy holder can easily authenticate consumers.
- **R2 (Secure registration)**: To guarantee the binding between name and real world identity.
- **R3 (Efficient revocation)**: To revoke the compromised or invalid key with low cost.
- **R4 (Efficient key update)**: To update key periodically without causing much overhead.
- **R5 (Key/certificate storage and caching)**: Improve the key/certificate distribution efficiency with in-network caching.
- **R6 (Routing Security)**: Enable the protection on the information exchanges among the routers.
- **R7 (Low bandwidth consumption)**: The KM scheme should have a negligible impact on bandwidth consumption.
- **R8 (Minimal additional delay)**: The KM scheme should only cause minimal (ideally zero) additional delays to data retrieval.
Requirements for protecting disaster networking with CCN/NDN

• **R9 (Availability)**: KM should be provided to make the authentications to data originator be possible, even the network is fragmented or disconnected. It also requires the KM service provision to enable cross-fragmentation authentications.

• **R10 (Energy efficiency)**: KM should not consume much energy of mobile devices for data exchange.

• **R11 (Robustness)**: KM should provide methods to bind a new name with a real-world identity, because there must be many newly assigned terminals for the refugees.

• **R12 (Revocation synchronization)**: The revocation for the identities should be synchronized for the fragmented networks.
Requirements for protecting video streaming over CCN/NDN

• **R13 (Backward and forward secrecy):** KM should be provided to prevent a new consumer from decrypting the data published before it joined the streaming group and prevent a leaving consumer from accessing the further video data, even they are provided by the servers or in-network caches.

• **R14 (Light-weight):** The KM should be light-weight for video data decryption.

• **R15 (Efficient key revocation):** The revocation of keys should be efficient and prevent the further in-network cached data from being decrypted using the compromised or expired keys.

• **R16 (Scalability):** The KM should enable thousands or millions of consumers, routers, and publishers. For example, the Olympic games or the football games attract a huge number of consumers simultaneously.
Requirements for protecting IoT using CCN/NDN

- **R17 (Low Energy Consumption):** The KM should not consume much energy, especially when running on the constraint devices.
- **R18 (Heterogeneity):** The KM should enable the sensor data to be provided to the devices over heterogeneous platforms managed by different operators.
- **R19 (Privacy preserving):** The KM should protect the privacy of the sensor data, even they are cached in the network.
Conclusions

- **Introduce** the key management scheme
- **Identify** the potential risks for the network operations and use scenarios
- **Identify** the KM requirements for network operations and use scenarios

Next step
- **Case 1:** Maintain as is (i.e., Requirement draft)
- **Case 2:** Include potential solutions and rewrite “Requirements and solutions for Key Management Schemes in CCN/NDN”

Comments welcome!
Our Related Work

