
Stateless Forwarding in Information Centric
Networking
AYTAC AZGIN AND RAVISHANKAR RAVINDRAN

{aytac.azgin,ravi.ravindran}@huawei.com

1IETF 102

Stateful Forwarding

Default CCN/NDN operation uses stateful forwarding
◦ Pending Interest Tables (PITs) store information on received requests:

◦ Content name

◦ Incoming/outgoing interfaces → Tell how to forward Data pkts

◦ Nonces (if implemented) → Identify duplicate/new requests

◦ Timeout values → Limit storage overhead by purging entries for failed requests

Stateful forwarding has multiple purposes
◦ Aggregate incoming requests → e.g., same name, different incoming interface and nonce

values

◦ Prevent attacks targeting a content name → as requests targeting the same name are
suppressed at the edge

◦ Create breadcrumbs for the Data packets → received Data packets are checked with PIT
entries for a match

IETF 102 2

Motivation for Stateless Forwarding
What are the main concerns for stateful forwarding?

◦ Aggregation is limited to edges → not necessary everywhere

◦ Shown to not fully prevent attacks → may use other means to provide security

◦ Introduces additional overhead: storage and processing

What remains is the breadcrumb advantage

◦ replicated using stateless forwarding, using in-packet filters

IETF 102 3

Ratio of Interests
that return a Data
packet

Problem: Interests with no Data return
What happens: Entries are stored within PIT,
until timeout (~4s)

Observations:
(1) Increased memory requirements to represent

worst-case scenario
(2) Increased latency to access entries

storage
requirements

active
requests

Design Objectives for Stateless Forwarding

We can summarize the basic design objectives as follows:
◦ Limit forwarding state to domain-based or globally shared forwarding strategy and

remove per-request dependency

◦ Reduce processing and storage requirements at ICN routers without relaxing the
security considerations

◦ Allow for easier transition towards enabling future networking architectures (for
instance, ICN over P4)

These objectives can be achieved using in-packet filters, which carry reverse-
path information, with vertically-integrated or horizontally-integrated designs

IETF 102 4

Received

Local

Sent

Received Local Sent

F: Some transformation function
F() =

Classic Bloom filter is not a desirable option due to no modification along reverse-path
and false positives, which can introduce significant overhead

Filter header consists of constant sized Bloom filter component and variable-sized
encoded counter

Use of CBF allows update along reverse path

ICN routers perform look-up, update and forward operations

Implement CBF processor for static operations

Vertical Design Choice: Counting Bloom Filter

IETF 102 5

Type = PIT CBF Length = L[B] + L[C]

Bloom filter Encoded Counter

Encoded CBF

2 Bytes 2 Bytes L[B]+L[C] Bytes

L[B] Bytes L[C] Bytes

Original Counting Bloom Filter

Matching Bloom Filter

Max(c) Encoded counter values Padding

10100020010030010040110021010001

10100010010010010010110011010001

0011 0 0 10 0 110 0 111 0 0 10 0 0 0 0

FIB

CS

FIB

CS

PIT

Service
Router

Content
Router

BFD

IMT

BFD

BFD: Bloom filter
database, used to
find local filter

IMT: interface mapping
table, used to find a
matching interface

“pit/LESS: Stateless Forwarding in Content Centric Networks”, A. Azgin, R. Ravindran, and G.Q. Wang, IEEE Globecom, 2016.

Vertical Design Choice: Packet Processing Flow

IETF 102 6

Check CS

(Perform exact

name match)

Respond

with Data

Check FIB

(Perform LPM

and extract

interface)

Check BFD

(Extract local

filter)

Drop

Interest

No CS

match

Matching FIB

entry Update

in-packet

filter

Forward

Interest

Content

exists

Incoming

Interest

Check CS

(Perform exact

name match)

Drop

Data

Check IMT
Drop

Data

No CS

match

Matching

entry

Update

in-packet

filter

Forward

Data

Content

exists

Incoming

Data

No

match

I
n
t
e
r
e
s
t

D
a
t
a

BFD: Bloom filter
database, used to
find local filter

IMT: interface
mapping table, used
to find a matching
interface

Horizontal Design Choice: Interleaved Labels

Design objective is to remove dependency of in-packet filter on Bloom filters
◦ provide same advantages as a Bloom filter based design while avoiding false positives with

minimal added complexity

Utilize integrated multi-label forwarding to address the complexity of more advanced
BF-based designs, while increasing the robustness in terms of security

Each ICN router implements a Local Transform Filter (LTF)
◦ modify in-packet filters for received Interest and Data packets

Each ICN router also carries a Filter Database (FDB)
◦ carry the mappings between interfaces and local filters

As filter implementation is decentralized, each ICN router can insert a dynamic set of
control bits to the selected filter for improved robustness

IETF 102 7

Horizontal Design Choice: Local Transform Filter

IETF 102 8

Assume XOR operation
for the Local Transform
Filter

Horizontal Design Choice: Interest Processing

IETF 102 9

Horizontal Design Choice: Data Processing

IETF 102 10

Local Filter Map can be considered as
a reformatted version of FDB to
enable efficient reverse mapping

Discussion on Common Limitation: Path Failure

Both solutions suffer from the same problem: cannot properly handle
link/node failures
◦ link/node failure typically leads to packet drops as path information is lost

Vertical design choice:
◦ link failure; without knowledge on alternate path’s filter, need to use an

alternate means to forward the data packet, longer paths increase the impact
of false positives

◦ node failure; without having access to an ICN router’s filter database, cannot
determine the next hop beyond the next hop

Horizontal design choice:
◦ link failure; similar to above (need an alternate means)
◦ node failure; as labels are interleaved, without having access to a node’s LTF

parameters, cannot recover the path information

IETF 102 11

How to Support Fast Path Recovery with Stateless
Forwarding?
Objective is to create a secure on-demand source route on the fly by utilizing locally
transformed path segment identifiers to create the stateless path
◦ also continue to address privacy concerns without exposing path information

Store-and-pass path-segment information during path setup using interleaved path
segment identifiers

IETF 102 12

A

B

C D

E

Segment 1

Segment 2

Segment 3

Routers create a path-segment identifier database (SID) to include all k-hop path-segments, where k=2 (SID, as intended
to include unique path-segment identifiers, may not be necessary and not used for scalability reasons)

≡SegmentID(A-B-C)

≡NodeID(A)::NodeID(B)::NodeID(C)

≡LinkID(A-B)::NodeID(C)

Basic Architecture to Support Fast Path Recovery

IETF 102 13

A

B

C D

E

Segment 1

Segment 2

Segment 3

Step1: A sends to B Interest[]

Step2: B sends to C Interest[Encrypt{Path(AC),C.key}]

Step3: C sends to D Interest[Encrypt{Path(AC),C.key};
Encrypt{Path(BD),D.key}] Step4: D sends to E Interest[Encrypt{Path(AC),C.key};

Encrypt{Path(BD),D.key};
Encrypt{Path(CE),E.key}]

1 2

3

4

NameType=I

NameType=I

NameType=I

NameType=I

LocalPathFilter(A,C)

LPF(A,C) LPF(B,D)

LPF(A,C) LPF(B,D) LPF(C,E)

NameType=I LPF(A,C)
or

LPF: local path filter

Path Recovery during Data Packet Forwarding

IETF 102 14

A

B

C D

E

Segment 1 Segment 2

Segment 3

NameType=D LPF(A,C) LPF(B,D) LPF(C,E)
0. Router E receives the following data packet

1. Router E extracts the LPF(C,E), and decrypts it
using its private key

2. Router E extracts information on Router C and
Router E; Router E’s identifier indicates the previous
hop as Router D

3. If path is operational, Router E sends the packet to
D (may or may not include information on C) after
removing LPF(C,E) (or replacing with info on Router C)

NameType=D LPF(A,C) LPF(B,D)
0. Router D receives the following data packet

1. Router D extracts LPF(B,D), and decrypts it using its private key

2. Router D extracts information on Router B and Router D; Router E’s
identifier indicates the previous hop as Router C (same information can also
be forwarded by Router E, as separate filter entry)

3. Path(C,D) is broken, so Router D identifies an alternative path to forward
Data packet to Router B over Path(B,Y,Z)

Y

Z

4. Router D can include a new path filter of LPF*(B,Y,Z), a non-encrypted path
filter, identifying, path and end-host Router B, in case of further failures,
packet is forwarded to target Router B through the alternative path(s)

