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Stateful Forwarding

Default CCN/NDN operation uses stateful forwarding

> Pending Interest Tables (PITs) store information on received requests:
o Content name

> Incoming/outgoing interfaces = Tell how to forward Data pkts
> Nonces (if implemented) = Identify duplicate/new requests
o Timeout values = Limit storage overhead by purging entries for failed requests

Stateful forwarding has multiple purposes

o Aggregate incoming requests —> e.g., same name, different incoming interface and nonce
values

° Prevent attacks targeting a content name — as requests targeting the same name are
suppressed at the edge

> Create breadcrumbs for the Data packets — received Data packets are checked with PIT
entries for a match
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Motivation for Stateless Forwarding

What are the main concerns for stateful forwarding?
o Aggregation is limited to edges — not necessary everywhere

> Shown to not fully prevent attacks = may use other means to provide security
° Introduces additional overhead: storage and processing
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What remains is the breadcrumb advantage
° replicated using stateless forwarding, using in-packet filters
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Design Objectives for Stateless Forwarding

We can summarize the basic design objectives as follows:

o Limit forwarding state to domain-based or globally shared forwarding strategy and
remove per-request dependency

> Reduce processing and storage requirements at ICN routers without relaxing the
security considerations

> Allow for easier transition towards enabling future networking architectures (for
instance, ICN over P4)

These objectives can be achieved using in-packet filters, which carry reverse-
path information, with vertically-integrated or horizontally-integrated designs
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Vertical Design Choice: Counting Bloom Filter

Classic Bloom filter is not a desirable option due to no modification along reverse-path
and false positives, which can introduce significant overhead

Filter header consists of constant sized Bloom filter component and variable-sized

encoded counter
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Use of CBF allows update along reverse path

ICN routers perform look-up, update and forward operations find local filter

Implement CBF processor for static operations
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BFD: Bloom filter
database, used to

“pit/LESS: Stateless Forwarding in Content Centric Networks”, A. Azgin, R. Ravindran, and G.Q. Wang, IEEE Globecom, 2016.
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Vertical Design Choice: Packet Processing Flow
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Horizontal Design Choice: Interleaved Labels

Design objective is to remove dependency of in-packet filter on Bloom filters

o provide same advantages as a Bloom filter based design while avoiding false positives with
minimal added complexity

Utilize integrated multi-label forwarding to address the complexity of more advanced
BF-based designs, while increasing the robustness in terms of security

Each ICN router implements a Local Transform Filter (LTF)
> modify in-packet filters for received Interest and Data packets

Each ICN router also carries a Filter Database (FDB)
o carry the mappings between interfaces and local filters

As filter implementation is decentralized, each ICN router can insert a dynamic set of
control bits to the selected filter for improved robustness
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Horizontal Design Choice: Local Transtorm Filter

Input Output
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orizontal Design Choice: Interest Processing

Router 2 - Interest Operations
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Horizontal Design Choice: Data Processing

R - Extract(Filter2)
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Local Filter Map can be considered as
a reformatted version of FDB to
enable efficient reverse mapping
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Router 2 — Data Operations
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Discussion on Common Limitation: Path Failure

Both solutions suffer from the same problem: cannot properly handle
link/node failures

> link/node failure typically leads to packet drops as path information is lost

Vertical design choice:

> link failure; without knowledge on alternate path’s filter, need to use an
alternate means to forward the data packet, longer paths increase the impact
of false positives

> node failure; without having access to an ICN router’s filter database, cannot
determine the next hop beyond the next hop

Horizontal design choice:
o link failure; similar to above (need an alternate means)

> node failure; as labels are interleaved, without having access to a node’s LTF
parameters, cannot recover the path information
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How to Support Fast Path Recovery with Stateless
Forwarding?

Objective is to create a secure on-demand source route on the fly by utilizing locally
transformed path segment identifiers to create the stateless path

° also continue to address privacy concerns without exposing path information

Store-and-pass path-segment information during path setup using interleaved path
segment identifiers

-
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Routers create a path-segment identifier database (SID) to include all k-hop path-segments, where k=2 (SID, as intended
to include unique path-segment identifiers, may not be necessary and not used for scalability reasons)
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Basic Architecture to Support Fast Path Recovery

Type=I Name LocalPathFilter(A,C)
or
Type:l Name LPF(A;C)

Step2: B sends to C Interest[Encrypt{Path(AC),C.key}]

Type=l Name

Stepl: A sends to B Interest[]

SeFment 2

\./ Segment 1 ©)
Step3: C sends to D Interest[Encrypt{Path(AC),C.key}; Egment 3
Encrypt{Path(BD),D.key}] Step4: D sends to E Interest[Encrypt{Path(AC),C.key};
Encrypt{Path(BD),D.key};
Type=l _Name LPF(A,C) LPF(B,D) Auelny i PR O e
LPF: local path filter Type=I Name LPF(A,C) LPF(B,D) LPF(C,E)
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Path Recovery during Data Packet Forwarding

egaTent 3

0. Router D receives the following data packet
Type=D Name LPF(A,C) LPF(B,D)

.R r E receives the followin k
1. Router D extracts LPF(B,D), and decrypts it using its private ke 0. Route ecelves the follo g data packet

Type=D Name LPF(A,C) LPF(B,D) LPF(C,E)

1. Router E extracts the LPF(C,E), and decrypts it
using its private key

2. Router D extracts information on Router B and Router D; Router E’s
identifier indicates the previous hop as Router C (same information can also

be forwarded by Router E, as separate filter entry) _ _
2. Router E extracts information on Router C and

3. Path(C,D) is broken, so Router D identifies an alternative path to forward Router E; Router E’s identifier indicates the previous
Data packet to Router B over Path(B,Y,Z) hop as Router D

4. Router D can include a new path filter of LPF*(B,Y,Z), a non-encrypted path 3. If path is operational, Router E sends the packet to
filter, identifying, path and end-host Router B, in case of further failures, D (may or may not include information on C) after
packet is forwarded to target Router B through the alternative path(s) removing LPF(C,E) (or replacing with info on Router C)
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