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Stateful Forwarding

Default CCN/NDN operation uses stateful forwarding
◦ Pending Interest Tables (PITs) store information on received requests:

◦ Content name

◦ Incoming/outgoing interfaces → Tell how to forward Data pkts

◦ Nonces (if implemented) → Identify duplicate/new requests

◦ Timeout values → Limit storage overhead by purging entries for failed requests

Stateful forwarding has multiple purposes
◦ Aggregate incoming requests → e.g., same name, different incoming interface and nonce 

values

◦ Prevent attacks targeting a content name → as requests targeting the same name are 
suppressed at the edge

◦ Create breadcrumbs for the Data packets → received Data packets are checked with PIT 
entries for a match
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Motivation for Stateless Forwarding
What are the main concerns for stateful forwarding?

◦ Aggregation is limited to edges → not necessary everywhere

◦ Shown to not fully prevent attacks → may use other means to provide security

◦ Introduces additional overhead: storage and processing

What remains is the breadcrumb advantage

◦ replicated using stateless forwarding, using in-packet filters
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Design Objectives for Stateless Forwarding

We can summarize the basic design objectives as follows:
◦ Limit forwarding state to domain-based or globally shared forwarding strategy and 

remove per-request dependency

◦ Reduce processing and storage requirements at ICN routers without relaxing the 
security considerations

◦ Allow for easier transition towards enabling future networking architectures (for 
instance, ICN over P4)

These objectives can be achieved using in-packet filters, which carry reverse-
path information, with vertically-integrated or horizontally-integrated designs
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Classic Bloom filter is not a desirable option due to no modification along reverse-path 
and false positives, which can introduce significant overhead

Filter header consists of constant sized Bloom filter component and variable-sized 
encoded counter

Use of CBF allows update along reverse path 

ICN routers perform look-up, update and forward operations

Implement CBF processor for static operations 

Vertical Design Choice: Counting Bloom Filter
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“pit/LESS: Stateless Forwarding in Content Centric Networks”, A. Azgin, R. Ravindran, and G.Q. Wang, IEEE Globecom, 2016. 



Vertical Design Choice: Packet Processing Flow
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Horizontal Design Choice: Interleaved Labels

Design objective is to remove dependency of in-packet filter on Bloom filters 
◦ provide same advantages as a Bloom filter based design while avoiding false positives with 

minimal added complexity

Utilize integrated multi-label forwarding to address the complexity of more advanced 
BF-based designs, while increasing the robustness in terms of security

Each ICN router implements a Local Transform Filter (LTF)
◦ modify in-packet filters for received Interest and Data packets

Each ICN router also carries a Filter Database (FDB)
◦ carry the mappings between interfaces and local filters

As filter implementation is decentralized, each ICN router can insert a dynamic set of 
control bits to the selected filter for improved robustness
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Horizontal Design Choice: Local Transform Filter
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Horizontal Design Choice: Interest Processing
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Horizontal Design Choice: Data Processing
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Local Filter Map can be considered as 
a reformatted version of FDB to 
enable efficient reverse mapping



Discussion on Common Limitation: Path Failure

Both solutions suffer from the same problem: cannot properly handle 
link/node failures
◦ link/node failure typically leads to packet drops as path information is lost

Vertical design choice:
◦ link failure; without knowledge on alternate path’s filter, need to use an 

alternate means to forward the data packet, longer paths increase the impact 
of false positives 

◦ node failure; without having access to an ICN router’s filter database, cannot 
determine the next hop beyond the next hop

Horizontal design choice:
◦ link failure; similar to above (need an alternate means)
◦ node failure; as labels are interleaved, without having access to a node’s LTF 

parameters, cannot recover the path information
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How to Support Fast Path Recovery with Stateless 
Forwarding?
Objective is to create a secure on-demand source route on the fly by utilizing locally 
transformed path segment identifiers to create the stateless path
◦ also continue to address privacy concerns without exposing path information

Store-and-pass path-segment information during path setup using interleaved path 
segment identifiers
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Routers create a path-segment identifier database (SID) to include all k-hop path-segments, where k=2 (SID, as intended 
to include unique path-segment identifiers, may not be necessary and not used for scalability reasons)

≡SegmentID(A-B-C)

≡NodeID(A)::NodeID(B)::NodeID(C)

≡LinkID(A-B)::NodeID(C)



Basic Architecture to Support Fast Path Recovery
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Step1: A sends to B Interest[]

Step2: B sends to C Interest[Encrypt{Path(AC),C.key}]

Step3: C sends to D Interest[Encrypt{Path(AC),C.key};
Encrypt{Path(BD),D.key}] Step4: D sends to E Interest[Encrypt{Path(AC),C.key};

Encrypt{Path(BD),D.key};
Encrypt{Path(CE),E.key}]
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NameType=I

NameType=I

NameType=I

NameType=I

LocalPathFilter(A,C)

LPF(A,C) LPF(B,D)

LPF(A,C) LPF(B,D) LPF(C,E)

NameType=I LPF(A,C)
or

LPF: local path filter



Path Recovery during Data Packet Forwarding
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NameType=D LPF(A,C) LPF(B,D) LPF(C,E)
0. Router E receives the following data packet

1. Router E extracts the LPF(C,E), and decrypts it 
using its private key

2. Router E extracts information on Router C and 
Router E; Router E’s identifier indicates the previous 
hop as Router D

3. If path is operational, Router E sends the packet to 
D (may or may not include information on C) after 
removing LPF(C,E) (or replacing with info on Router C)

NameType=D LPF(A,C) LPF(B,D)
0. Router D receives the following data packet

1. Router D extracts LPF(B,D), and decrypts it using its private key

2. Router D extracts information on Router B and Router D; Router E’s 
identifier indicates the previous hop as Router C (same information can also 
be forwarded by Router E, as separate filter entry)

3. Path(C,D) is broken, so Router D identifies an alternative path to forward 
Data packet to Router B over Path(B,Y,Z)

Y

Z

4. Router D can include a new path filter of LPF*(B,Y,Z), a non-encrypted path 
filter, identifying, path and end-host Router B, in case of further failures, 
packet is forwarded to target Router B through the alternative path(s)


