Stateless Forwarding in Information Centric
Networking

AYTAC AZGIN AND RAVISHANKAR RAVINDRAN

{aytac.azgin,ravi.ravindran}@huawei.com

IETF 102

Stateful Forwarding

Default CCN/NDN operation uses stateful forwarding

> Pending Interest Tables (PITs) store information on received requests:
o Content name

> Incoming/outgoing interfaces = Tell how to forward Data pkts
> Nonces (if implemented) = Identify duplicate/new requests
o Timeout values = Limit storage overhead by purging entries for failed requests

Stateful forwarding has multiple purposes

o Aggregate incoming requests —> e.g., same name, different incoming interface and nonce
values

° Prevent attacks targeting a content name — as requests targeting the same name are
suppressed at the edge

> Create breadcrumbs for the Data packets — received Data packets are checked with PIT
entries for a match

IETF 102 2

Motivation for Stateless Forwarding

What are the main concerns for stateful forwarding?
o Aggregation is limited to edges — not necessary everywhere

> Shown to not fully prevent attacks = may use other means to provide security
° Introduces additional overhead: storage and processing

storage _
/\/ requirements

2
10

1609

active
requests

- -_ 1
5008 5.0x10

Increased latency

1608 = =10

Number of active requests at a content router
PIT storage requirements (in GB)

5e07 =5.0x10 ©

|Well behavedness ratio|fo: notwork traffic

What remains is the breadcrumb advantage
° replicated using stateless forwarding, using in-packet filters
IETF 102 3

Design Objectives for Stateless Forwarding

We can summarize the basic design objectives as follows:

o Limit forwarding state to domain-based or globally shared forwarding strategy and
remove per-request dependency

> Reduce processing and storage requirements at ICN routers without relaxing the
security considerations

> Allow for easier transition towards enabling future networking architectures (for
instance, ICN over P4)

These objectives can be achieved using in-packet filters, which carry reverse-
path information, with vertically-integrated or horizontally-integrated designs

>
% i Received | local)5
F: Some transformation function

IETF 102 4

Vertical Design Choice: Counting Bloom Filter

Classic Bloom filter is not a desirable option due to no modification along reverse-path
and false positives, which can introduce significant overhead

Filter header consists of constant sized Bloom filter component and variable-sized

encoded counter

2 Bytes 2 Bytes L[B]+L[C] Bytes

Original Counting Bloom Filter

Type = PIT CBF | Length=L[B] +L[C] | Encoded CBF 10100020010030010040110021010001

/’_\ Matching Bloom Filter
Y

Bloom filter | Encoded Counter

L[B] Bytes L[C] Bytes 0011
[®

10100010010010010010110011010001
Max(c) Encoded counter values Padding

001004100111 00100000

Use of CBF allows update along reverse path

ICN routers perform look-up, update and forward operations find local filter

Implement CBF processor for static operations

PIT

BFD

FIB

BFD: Bloom filter
database, used to

“pit/LESS: Stateless Forwarding in Content Centric Networks”, A. Azgin, R. Ravindran, and G.Q. Wang, IEEE Globecom, 2016.

IETF 102

CS

Service
Router

IMT: interface mapping
table, used to find a
matching interface

Content

QRouter

FIB

BFD

CS

IMT

Vertical Design Choice: Packet Processing Flow

™~

Check CS

(Perform exact

name match)

Respond

with Data

IMT: interface
mapping table, used
to find a matching
interface

IETF 102

S~
~~
S
-~
~.
-
~
~
-
-

~
-
~——n
~—
——

|-

Check FIB n BFD: Bloom filter
.| (Perform LPM Drop
" " and extract Interest t database, used to

interface) el find local filter

r A
_#E:gt(zt | Forward | e 4
In- /
| Y

Check BFD / filter nerest | s
(Extract local d

filtter) -~ t

Check CS Drop
(Perform exact » Check IMT » Data D
name match) H 3
i t
J Forward)
/ Update Data
Drop v in-packet /
Data filter -

e ——— e

”’
-

Horizontal Design Choice: Interleaved Labels

Design objective is to remove dependency of in-packet filter on Bloom filters

o provide same advantages as a Bloom filter based design while avoiding false positives with
minimal added complexity

Utilize integrated multi-label forwarding to address the complexity of more advanced
BF-based designs, while increasing the robustness in terms of security

Each ICN router implements a Local Transform Filter (LTF)
> modify in-packet filters for received Interest and Data packets

Each ICN router also carries a Filter Database (FDB)
o carry the mappings between interfaces and local filters

As filter implementation is decentralized, each ICN router can insert a dynamic set of
control bits to the selected filter for improved robustness

IETF 102 7

Horizontal Design Choice: Local Transtorm Filter

Input Output

Hash(content-name)

In-filter \g) Local J

/‘ Transform Filter —

Out-filter

Local-filter

I-bits (n-1)-bits
Assume XOR operation In-filter ~ Local-filter
for the Local Transform ®(Hash(content-namc))
Filter XOR

Out-filter
n-bits

transform

IETF 102 .

orizontal Design Choice: Interest Processing

Router 2 - Interest Operations

Input Transform Output
[. 1B ! (B : |
Interest (R1—>R2) ROUTE? TI‘""“S;(RZ_’I;? -
5 ype ame 1iter.
Name — Hash(Name) npe | Same L IOALL “epg.
LTF Fl 2 _j e (interfaces)::{LFs-2}
- 1ter
FIB output __—~ LF2 FDBA ROUTER 1 e
(on FDB) Filter (interfaces) {LFs-1} (o ROUTER 3
. 'g ilterl #ﬁera FDB_3
Fllterl v iter (interfaces):{LFs-3}
£
LTF(hash, [local-filter, received downstream-filter]) Filter2 replaces Filterl 2| ;
Filter Database

for the outgoing Interest
packet at Router 2
towards Router 3

= |upstream-filter|

IETF 102 9

Horizontal Design Choice: Data Processing

R - Extract(Filter2)
Type | Name | Filterl | | _, rgjlter]::LF-2 (R2—R1)}
. %
Extract(Filter1)
—Filterx::LF-1 (R1—Rx) ROUTER 2
LFM-2 Data (R3—>R2)
R e (LF-2)::{interface} Type | Name | Filter2
ROUTER 1 .
LEMAL : ROUTER 3
(LF-1)::{interface} v .
% Interface meetrics LFM-3
E (LF-3)::{interface}
& .
Local Filter Map

Local Filter Map can be considered as
a reformatted version of FDB to
enable efficient reverse mapping

IETF 102

Router 2 — Data Operations

Input

Name —* Hash(Name)

Filter2

ILTF([received upstream-filter])
= |downstream-filter. local-filter|

Transform Output
Inverse-LTF . <
(ILTF) F11'_t_ler
<y

Filter] | LF2 |

Filterl

LF2

Local filter extracted by
Router 2. for validation.
and forwarding decision

Filterl replaces Filter2 for the

outgoing Data packet at
Router 2 towards Router 1

10

Discussion on Common Limitation: Path Failure

Both solutions suffer from the same problem: cannot properly handle
link/node failures

> link/node failure typically leads to packet drops as path information is lost

Vertical design choice:

> link failure; without knowledge on alternate path’s filter, need to use an
alternate means to forward the data packet, longer paths increase the impact
of false positives

> node failure; without having access to an ICN router’s filter database, cannot
determine the next hop beyond the next hop

Horizontal design choice:
o link failure; similar to above (need an alternate means)

> node failure; as labels are interleaved, without having access to a node’s LTF
parameters, cannot recover the path information

IETF 102 11

How to Support Fast Path Recovery with Stateless
Forwarding?

Objective is to create a secure on-demand source route on the fly by utilizing locally
transformed path segment identifiers to create the stateless path

° also continue to address privacy concerns without exposing path information

Store-and-pass path-segment information during path setup using interleaved path
segment identifiers

-
‘—

-

——

Routers create a path-segment identifier database (SID) to include all k-hop path-segments, where k=2 (SID, as intended
to include unique path-segment identifiers, may not be necessary and not used for scalability reasons)

IETF 102 12

Basic Architecture to Support Fast Path Recovery

Type=I Name LocalPathFilter(A,C)
or
Type:l Name LPF(A;C)

Step2: B sends to C Interest[Encrypt{Path(AC),C.key}]

Type=l Name

Stepl: A sends to B Interest[]

SeFment 2

\./ Segment 1 ©)
Step3: C sends to D Interest[Encrypt{Path(AC),C.key}; Egment 3
Encrypt{Path(BD),D.key}] Step4: D sends to E Interest[Encrypt{Path(AC),C.key};
Encrypt{Path(BD),D.key};
Type=l _Name LPF(A,C) LPF(B,D) Auelny i PR O e
LPF: local path filter Type=I Name LPF(A,C) LPF(B,D) LPF(C,E)

IETF 102 13

Path Recovery during Data Packet Forwarding

egaTent 3

0. Router D receives the following data packet
Type=D Name LPF(A,C) LPF(B,D)

.R r E receives the followin k
1. Router D extracts LPF(B,D), and decrypts it using its private ke 0. Route ecelves the follo g data packet

Type=D Name LPF(A,C) LPF(B,D) LPF(C,E)

1. Router E extracts the LPF(C,E), and decrypts it
using its private key

2. Router D extracts information on Router B and Router D; Router E’s
identifier indicates the previous hop as Router C (same information can also

be forwarded by Router E, as separate filter entry) _ _
2. Router E extracts information on Router C and

3. Path(C,D) is broken, so Router D identifies an alternative path to forward Router E; Router E’s identifier indicates the previous
Data packet to Router B over Path(B,Y,Z) hop as Router D

4. Router D can include a new path filter of LPF*(B,Y,Z), a non-encrypted path 3. If path is operational, Router E sends the packet to
filter, identifying, path and end-host Router B, in case of further failures, D (may or may not include information on C) after
packet is forwarded to target Router B through the alternative path(s) removing LPF(C,E) (or replacing with info on Router C)

IETF 102 14

