Supporting QoS Aware Data Delivery in Information Centric Networks

> IETF-102 @ Montreal, Canada. Sunday, July 15, 2018

Anil Jangam, Prakash Suthar, Milan Stolic (Cisco Systems)

draft-anilj-icnrg-icn-qos-00.txt

Introduction

- Number of studies on an optimal and efficient routing of Interest requests have been published
- So far, QoS related discussions in ICN is mainly centered around forwarding of Interest request
 - A very little discussion is provided on how to implement and enforced the QoS on the Data packet path
- It is imperative for the service providers (Cisco VNI 2016-2021) to meet the quality of service (QoS) demands to provide a better quality of experience to their users
 - QoS handling in ICN is still an open research topic and we are proposing an approach to achieve it
- We provide a rational for QoS in ICN, propose an approach and changes in ICN protocol to support DiffServ based QoS mechanism

Draft Outline

Table of Contents

1. Introduction			3
2. Conventions and Terminology			3
3. Motivation and Prior Work			3
3.1. QoS Perspective in ICN			4
3.2. ICN Deployments in Mobile Networks			5
4. QoS in IP Networks			5
4.1. Traffic Classification and Marking			6
5. QoS in Mobile Networks			7
5.1. QoS in 4G Networks			7
5.1.1. QoS Classes			8
5.1.2. QoS Policy Control and QCI characteristics			8
5.2. QoS in 5G Networks			9
6. QoS in hICN			10
7. Supporting QoS in ICN			10
7.1. DiffServ in ICN			10
7.2. Supporting DiffServ Fields in CCNx Message			11
7.2.1. Overall CCNx Packet Format			11
7.2.2. Generic CCNx Message Format			11
7.2.3. DiffServ Fields Message TLV			12
7.2.4. Modified Interest Message TLV			13
7.2.5. Modified Content Object TLV			13
8. Empirical Study			14
9. Security Considerations			15
10. Summary			15
11. Acknowledgements			16
12. IANA Considerations			16
13. References			16
13.1. Normative References			16
13.2. Informative References			17
Authors' Addresses			18

Prior Work on QoS in ICN

- M.F. Al-Naday et.al. attribute the scalability limitation of IP based QoS model to its lack of information awareness, which can be resolved in an ICN like network
 - Propose using the QoS aware name prefixes; however, it puts a limitations on third parties in defining an alternative QoS enforcement mechanisms
- Weibo Chu et.al. present a QoS model based on the popularity ranking of the content and its placement/location in the network
 - Classify content into three categories locally cached, remotely cached, and un-cached contents
 - Network delay is modeled as a function of the distance of the content from the requester
- Xingwei Wang et.al. present a QoS mechanism applicable to the routing of Interest requests
 - Decide the suitability of the forwarding link to make the process more energy efficient
- Christos et.al. argue about need for a differentiated routing and forwarding mechanisms
 - Use the name of the content as well as specify the nature of the traffic
 - Traffic differentiation is better handled at the network level

QoS related discussions are mainly focused on the forwarding of the Interest requests

QoS – An Opportunity in ICN

- ICN provides flexibility in forwarding the Interest traffic on to multiple next hops; however, Data packets are always forwarded on the Interface recorded in the PIT
 - A contention for transferring Data packets serving multiple content on the same interface
 - Forwarding of Data packet traffic also becomes the problem of scheduling of traffic
 - Also, very nature of type of traffic requires a differentiated traffic handling to ensure QoS
- Newer ICN deployment scenarios provide further opportunity and requirements for extending ICN specific QoS (all three are current/active Internet-Drafts)
 - Native deployment of ICN in 4G/LTE networks
 - ICN based extensions to 5G control and user plane
 - Hybrid ICN (hICN) and its use in management of mobility in 5G networks
- Variety of QoS classes for different networks
 - IP based differentiated services code points (DSCP)
 - QoS Class Identifiers (QCI) used in 4G mobile networks
 - Flows based QoS Identifiers (QoS Flow Identifier QFI) used in 5G mobile networks

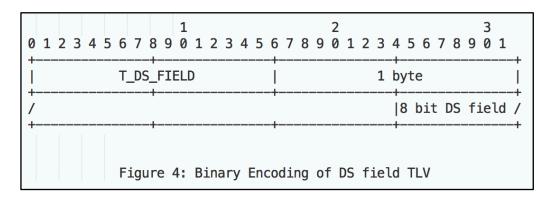
Supporting QoS in ICN

- The per-hop behavior (PHB) design of DiffServ QoS model makes it a natural choice for implementation of QoS in hop-by-hop based CCN/NDN network
- QoS DSCP codes required to be encoded in Data messages to achieve differentiated packet processing required for Data traffic handling
- DSCP codes are encoded in to Interest packet at the consumer end
 - CCN/NDN router (or origin server/producer) locating the content copies DSCP code into Data message
- Each router on the Data packet path use DSCP codes to enforce the PHB QoS behavior

Supporting QoS CCNx Message

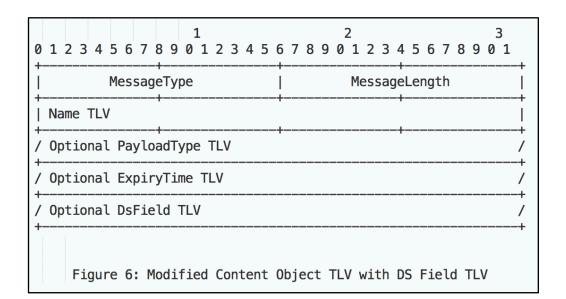


ICN Research Group (ICNRG)


+		5 7 8 9 0 1 2 3 4		-+
Version	PacketType	PacketL	ength	
Packe	etType specific	fields	HeaderLength	ļ
/ Optional Hop-by	/-hop header TLVs	5		/
/ PacketPayload 1	ſLVs			/
The packet payloa optional Validati	ion TLVs.	2 5 7 8 9 0 1 2 3 4	3	-+
CCNx Message TL	V			/
/ Optional CCNx \	/alidationAlgori	thm TLV		/
/ Optional CCNx \ +	/alidationPayload	d TLV (Validation	Alg required)	_+ / _+
F	igure 1: Overal	l CCNx Packet For	rmat	

1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 MessageType MessageLength 1 Name TLV (Type = T_NAME) 1 / Optional Message TLVs (Various Types) / / Optional Payload TLV (Type = T_PAYLOAD) / Figure 2: Generic CCNx Message Format 1

DiffServ Fields Message TLV


1 0 1 2 3 4 5 6 7 8 9 0 1	234	56	5 7	8	2 9 (2	2	3	4	5	6	7	8	9	3 0 1	
MessageType						M	ess	sag	eL	.er	ngtl	า				ļ
Name TLV		+							+-							+
/ Optional DsField TLV							-+ /									
++																
Figure 3: DS Field Message TLV																

Modified Interest & Content TLV

1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6	2 5 7 8 9 0 1 2 3 4 5 6 7 8	3 901				
MessageType	MessageLength	+				
Name TLV	· · · · ·	+ 				
/ Optional KeyIdRestriction TLV	· · · · · · · · · · · · · · · · · · ·	/				
/ Optional ContentObjectHashRest	riction TLV	/				
/ Optional DsField TLV						
		T				
Figure 5: Modified Interest M	Message TLV with DS Field	I TLV				

- As Interest packet travel multiple hops until the requested content it found, we propose to add a new optional DsField TLV in the CCNx Interest message.
- The DsField TLV shall be copied over from the Interest message into the Content Object TLV

Evaluation Approach

- A tentative progression of the verification step is given below
 - Implement and test the protocol changes through simulation using ndnSIM NDN simulator
 - Based on the learning and insight from the simulation study, we plan to implement a real application setup using [VICN] platform

Summary

- A prior art study provides a scope for implementing QoS in ICN network
- We presented how DiffServ based QoS mechanism can be used in ICN (CCN/NDN) network
 - Presented changes in CCNx protocol to support differentiated services code point (DSCP)
- Compatibility between the two architectures stem from the fact that both these architectures work on hop-by-hop basis
- More study and investigation required to understand applicability in other ICN based network adoptions, such as 4G, 5G mobile networks and hICN based networks
- Security related aspects need further elaboration not only in the context of DifffServ framework, but also from the perspective of 4G and 5G mobile networks

Thank you!

- We look forward to further comments and suggestions for improvements
- Thank you for your continued support and valuable feedback