
NDN-IoT: a readily usable package for 
experimentation with IoT over Named Data Network

ZHIYI ZHANG, YANBIAO LI, EDWARD LU, TIANYUAN YU,  ALEX AFANASYEV, LIXIA ZHANG

NDNCOMM

SEPT 2018



Objectives

♢ Audience: people interested in NDN but don’t know where to start
¡ Or just want an easy start

♢ Make a “all-in-one” IoT demo package based on NDN-RIOT
¡ a integrate and modularized open-source library
¡ well-documented APIs 
¡ Some pre-defined naming convention for different services to cooperate

♢ Users may
¡ Just to play around
¡ develop new apps 
¡ Further extend the package (along all software/hardware dimensions)

♢ Non-goals
¡ Wide platform availability
¡ heterogenous network technologies supporting 

3



Documentation

♢ Introductory whitepaper
♢ user guide

¡ Compatible hardware
¡ how to download, install, and turn on
¡ Make a How-to YouTube video

♢ App developer’s guide
♢ System developer’s guide
♢ Visualization of what is going on to demonstrate NDN functionality

4



Developing a community

♢ First and foremost: autoconfiguration, usability, resiliency
¡ Jeff: no one would bother to try if you don’t have resilient operation

♢ Set up a mailing list
♢ Strongly encouragement on comments and feedbacks

¡ Some token awards or recognitions?

♢ Visualize system reactions actions
♢ Inviting attacks?  

5



Goals of NDNoT Library

Providing integrated and lightweight NDN support in IoT scenario:
♢ Basic NDN protocol stack and communication features
♢ NDN running over link layer
♢ Security bootstrapping
♢ Service discovery
♢ Schematized Trust
♢ Usable Access Control for constrained devices
♢ NDN Sync support

6



Hardware

IOT devices
♢ Atmel Xpro (RIOT OS): 802.15.4
♢ ESP32: WiFi, BLE, Bluetooth

Controller
♢ Raspberry Pi
♢ Android Phone
♢ Linux/MacOS

7



IoT Device Software Framework

8

Adaptation Layer

BLE 802.15.4

Lightweight Security Support

Bootstrapping Access Control Service 
Discovery

NDN

Application Application Application

…

…

NDN Sync

WiFi Ethernet

…

Application

ND
N 

RI
OT



A simple story

♢ One buys a smart home temperature sensor with a IoT board that only has 32k 
RAM and 48MHz

♢ What’s next?

9



Bootstrapping

Goal
♢ The IoT device (e.g., Temperature Sensor) learns the trust anchor of the 

system and obtain an identity certificate issued by the system controller 
(e.g., Android Phone)

Assumptions 
♢ The IoT device and the home controller have shared secret through out-

of-band means
¡ e.g., the user uses his phone to scas the QR code on the sensor 

♢ Use the shared secret as a crypto public key (BK), e.g., ECC/RSA public 
key

10



Bootstrapping

♢ Identify each other by verifying the possession of shared secret.
♢ Negotiate a symmetric key for better performance
♢ Utilize uniqueness to prevent replay attack
♢ Use Interest parameter to save bandwidth

11

Generate Symmetric Key (TSK) with DH

/ndn/sign-on/<Param Digest>
<SecretDigest>;<Token-1>;<Signature-BK>

<AnchorCert>,<KeyedHashMAC>,<Token-2>,<HMAC-TSK>

/<HomePrefix>/cert/<Param Digest>
<SecretDigest>;<CKPubKey>;<HMAC-TSK>

Sign device’s CK and generate cert
<DeviceCertificate>,<HMAC-TSK>,<AvailableService>

Generate Communication Key (CK)

IoT Device Controller



Bootstrapping Assessment and Performance

Assessment
♢ One asymmetric signature signing and verification (I1)
♢ One Diffie Hellman Process
♢ Three HMAC signing and verification (D1, I2, D3)

Performance:
♢ Time Consumption: sec(s) (including network and system IO) for Xpro (with RIOT) 

board (32K RAM, 48MHz)
♢ Details: ECC key size 160 bits;  DH key size 256 bits
♢ Bandwidth Consumption: around 300 bits less by utilizing Interest parameters

12



Service Discovery

♢ Learning existing services from the controller in the last step of bootstrapping
♢ Advertising services by broadcasting advertisements after bootstrapping
♢ Broadcasting again when services change or restart (soft state)
♢ Query meta data before using a service

13

/<HomePrefix>/SD/<DeviceIdentity>/LIST/<ServiceNames>

/<HomePrefix>/<DeviceIdentity>/<ServiceName>/QUERY

Periodically broadcast advertisement for some time after 
the bootstrapping

<MetaInfo of the Service>,<Signature-CK>

IoT Device

Another IoT Device



Schematized Trust

♢ Control IoT device’s trust relationship with other devices in different scenarios

Example:
♢ The AC (/home/living/AC) should only trust the temp data (/home/living/temp) under 

the same prefix
♢ The AC should only obey the command signed by the device with controller prefix 

(/home/control) or with specific format (/home/living/remote-<>)

14



Lightweight Access Control

♢ Existing implementation of NDN access control doesn’t fit constrained devices
♢ Instead use all symmetric key encryption/decryption
♢ Use Interest parameter to save bandwidth

15

/<HomePrefix>/AC/<ProIdentity>/<ParamD>
<Type>;<KeyID>;<DHPubKey>;<CKSig>

Negotiate Content 
Encryption Key with DH 

Negotiate Key Encryption Key with DH 

<DHPubKey>;<AKSig>

<EncContentKey>;<DHPubKey>;<AKSig>

/<HomePrefix>/AC/<ConIdentity>/<ParamD>
<Type>;<Namespace>;<DHPubKey>;<CKSig>

Access 
Controller

Producer Consumer



Adaptation Layer

♢ The adaptation layer abstracts different link-layer protocols and wraps the NDN 
Interest and Data packets into link-layer frames. 

♢ Name Prefix <-> Interface mapping
♢ A separate process and communicates with NDN applications using Inter-Process 

Communication (IPC) or other equivalent mechanism.

16

NDN Forwarding 
Process

NDN App

NDN App

NDN App

NDN Forwarding 
Process



Current status and future plan

♢ Finished with unit tests:
¡ NDNoT for RIOT: Bootstrapping
¡ NDNoT for RIOT:  Service Discovery
¡ NDNoT for RIOT: Access Control

♢ In Progress
¡ Adaptation Layer
¡ Specification
¡ Tutorial

17

• Next stage
• NDNoT for RIOT: schematized trust
• NDNoT for RIOT: sync
• NDNoT for RIOT: integrate test
• NDNoT for ESP32



Thank You!

18


