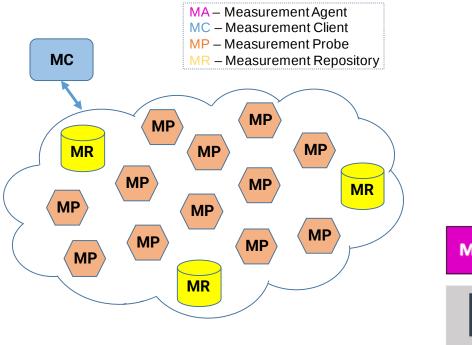
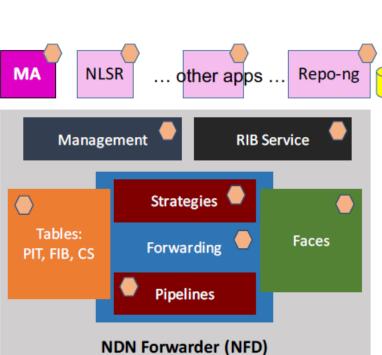
Network Measurement Framework and Path Tracing Utility for NDN

{ Lotfi.Benmohamed , Davide.Pesavento }@nist.gov


Network Measurement


- Network measurement is fundamental to network operation, application performance, and policy (not just research)
- Stakeholder communities involved:
 - Network user community
 - What the network is doing to my packets measure QoS/QoE/SLA
 - Academic community: networking research
 - Network operators
 - Anomaly detection/capacity planning
 - Monitor network health/network forensics
 - Network policy makers
 - Define baseline for policies/pricing
 - Measure adoption of technologies

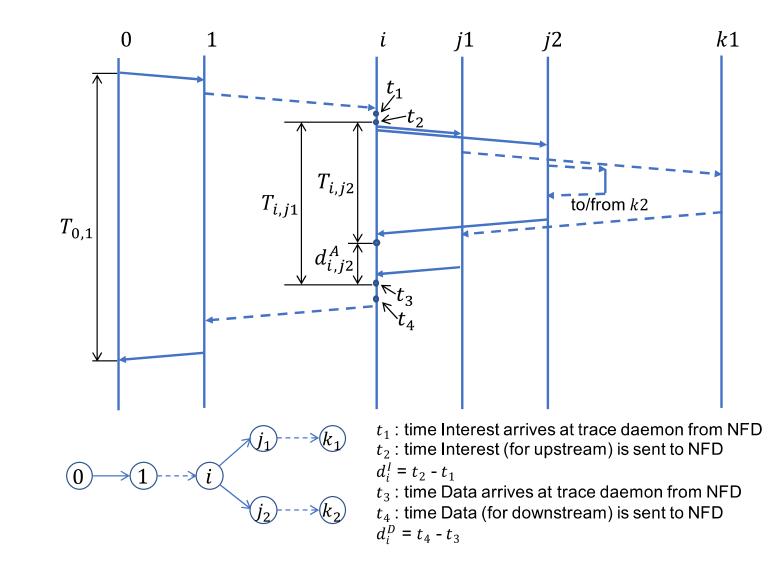
Goal

- Empower NDN with a built-in measurement framework that
 - can support multiple use cases,
 - can be used by different applications that need to produce and/or consume network measurements
- As new applications are developed, they
 - can be instrumented with measurement probes, and
 - make use of the framework to meet their measurement needs

Design

- Client-Agent interaction:
 - 4-way handshake
 - Similar to RICE approach
 - 👝 Measurement request
 - = Reply containing token
 - 🗖 Interest with token
 - = Data with results

New Effort


- DNMP: Distributed Network Measurement Protocol
 - Pollere's project funded under a NIST SBIR Phase1, started August 1.
- Uses a brokerless publish-subscribe communications model for both the measurement requests and the resulting measurement data
 - with goal to automate process of adding measurement probes using trust schema templates

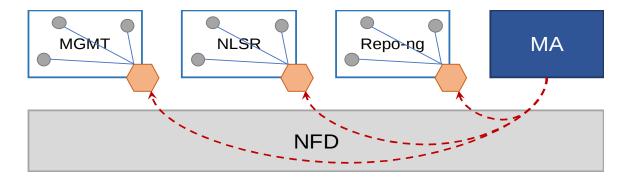
	Purpose	Duration	Funding level
Phase I	Feasibility	6 months	Up to \$100K
Phase II	R&D with commercialization plan	2 years	Up to \$300K

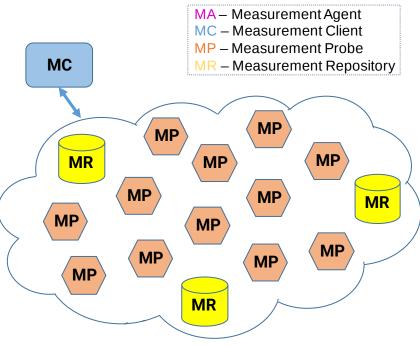
Path Tracing

- Think of path tracing as just one of the probes within the NDN Measurement Framework
- Challenges for tracing in ICN vs. in IP
 - In IP: one next-hop, one path
 - In ICN, due to Caching/Multiple paths/Forwarding strategy: path(s) followed by one Interest can change over time even if routing (i.e. FIB entry) doesn't change
- Send a "trace" Interest to discover how a "regular" Interest would be routed
 - Returns list of traversed nodes
 - Associated RTTs
 - Potentially other information as well
- Parameters in trace request include:
 - Exploring multiple paths
 - Discover all available paths while bypassing strategy
 - Ignore cached content to discover producers

NDN-Trace Design

Other Traceroute Proposals


- **CCNinfo** / Contrace (<u>https://tools.ietf.org/html/draft-asaeda-icnrg-ccninfo-01</u>)
 - For tracing multiple paths:
 - requires PIT entries (created by trace requests) to be kept alive for some timeout period
 - represents a significant departure from the "flow balance" principle
 - Does not provide RTT measurements between the client node and intermediate nodes on the path
 - only provides RTT between client and the node where the content is found (same as ping)
 - also provides one-way delay, but requires synchronized clocks
 - Trace built in the request packet as it travels upstream
- ICN Traceroute (<u>https://tools.ietf.org/html/draft-mastorakis-icnrg-icntraceroute-03</u>)
 - Resembles the mechanism used by IP traceroute tool
 - Iteratively discovers the path by issuing Interests with a progressively increasing HopLimit field
 - Uses new PathSteering header:
 - constructed hop-by-hop while the reply travels back to the client
 - included in subsequent trace requests that must be forwarded along the same path


NMF: NDN Network Measurement Framework

NDN-Trace is just one of the many "probes" of the **NDN Measurement Framework**.

Poster at ACM ICN'17

• <u>https://conferences.sigcomm.org/acm-icn/2017/proce</u> edings/icn17-1005.pdf

NMF: Status

Completed implementation of first version, including:

- ^o Node agent with a few measurement probes
 - https://github.com/usnistgov/nmf-agent
- ° C++ client library and interactive command-line tool
 - <u>https://github.com/usnistgov/nmf-client</u>

Design of new features ongoing

- "Long-term" storage of measurements data (repo?)
- Access control (NAC?)
- Capability discovery/negotiation (pub-sub?)

Two main use cases

- ^o Monitoring of operator networks, POV of the operator
- ^o Measure/probe the network from the edge (RIPE Atlas, CAIDA Ark)

NMF: Basic Interaction

(Clier			Ag				ent		Pro	Probe		
				urement r ⊲node>/N	-		ic>/ <mpa< th=""><th>rams</th><th>>/<comm< th=""><th>andIntere</th><th>stCompor</th><th>nents></th><th></th></comm<></th></mpa<>	rams	>/ <comm< th=""><th>andIntere</th><th>stCompor</th><th>nents></th><th></th></comm<>	andIntere	stCompor	nents>	
alt		[instant measurement]					-	m measur uct Data p					
		Reply	ly with	Data pac	ket contai	ning statu	us and res	sults					
		[long-	-term	measure	ment]								
		Rep	ply wit	h Data pa	cket cont	aining sta	tus and to	oken					
	Send Interest with token					•	m measui uct Data p						
				Data pacl		nina statu	s and res	ults					
		• • •		•		0							
(Clie	ent						Ag	ent		Pro	obe	

NMF: Eventual Goals

Extensibility

- Anyone can add a custom probe
- We will define an internal API for probes and provide a small library to help writing new probes
- App developers can integrate the framework in their app

Integration with access control protocols

- Measurement data can be sensitive
- Different clients have different access privileges

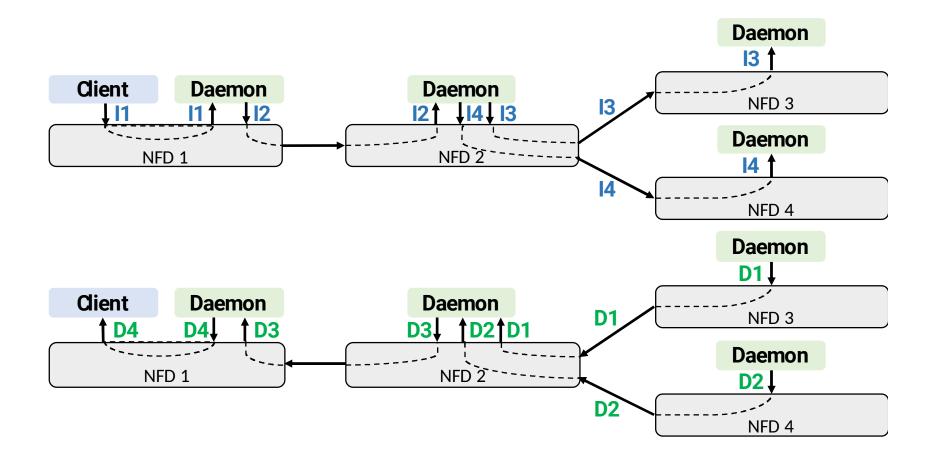
Long-term storage and querying of historical data

NMF: Protocol Details

Verbs

- ° measure
- ° query
- retrieve
- interrupt

We have defined:


- Packet format, including TLV encoding
- Client <-> agent protocol

NMF: Protocol Details

/<domain>/<node>/NMF/<verb>/<MParams>/<CIComps>
(still based on v0.2 packet format)

```
MParams ::= MPARAMS-TYPE TLV-LENGTH
    Token ::= TOKEN-TYPE TLV-LENGTH
        non-terminated unsigned char string
    Label ::= LABEL-TYPE TLV-LENGTH
        non-terminated unsigned char string
    When ::= WHEN-TYPE TLV-LENGTH
        non-terminated unsigned char string
    (repeatable) Parameter ::= PARAMETER-TYPE TLV-LENGTH
        Name ::= NAME-TYPE TLV-LENGTH
            non-terminated unsigned char string ("face.id" => 'f', 'a', 'c', 'e', '.', 'i', 'd')
        Value ::= VALUE-TYPE TLV-LENGTH
            non-terminated unsigned char string ("257" => '2', '5', '7')
    (repeatable) Result ::= RESULT-VALUE-TYPE TLV-LENGTH
        Name ::= NAME-TYPE TLV-LENGTH
            non-terminated unsigned char string
        Value ::= VALUE-TYPE TLV-LENGTH
            non-terminated unsigned char string
```

Old NDN-Trace Design

Old NDN-Trace Design

Current v1 implementation is considered "done"

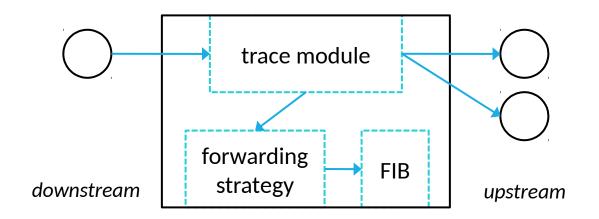
- Paper at ACM ICN'17
 - https://conferences.sigcomm.org/acm-icn/2017/proceedings/icn17-86.pdf
- Tested by John DeHart on ONL

However:

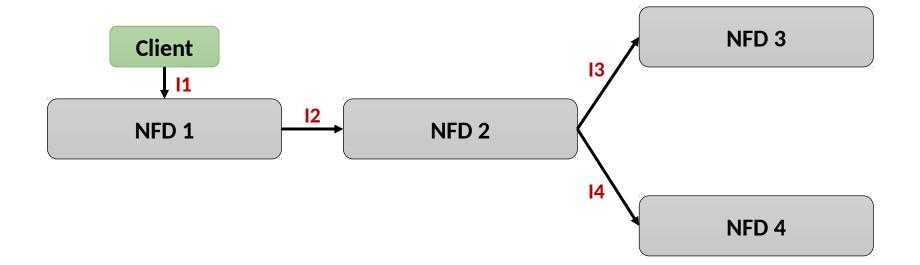
- ° It requires non-trivial changes to every strategy
- Code is hard to maintain
- We'd like to have more power over the tracing process (e.g., trace only a subset of next hops)

NDN-Trace: New "In-Forwarder" Design

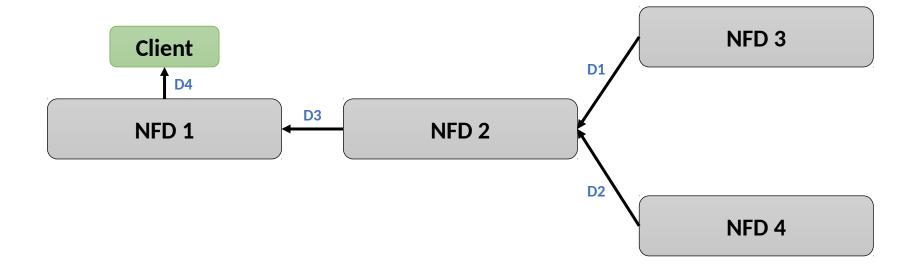
Forwarding plane dispatches trace requests and responses to a **traceroute module**.


Strategy's Interest forwarding API adds a dry-run mode.

• In dry-run mode, the chosen strategy offers its forwarding decisions, but does not transmit Interests or alter any state or data structures.


The traceroute module invokes strategy dry-run mode, transmits trace requests to next hops as needed, and collects and returns responses.

NDN-Trace: Router Behavior


- 1. Let the strategy decide which next hops it would use for an Interest, assuming the Interest was retransmitted *T* times (*T*=0 for new Interests).
- 2. Send trace requests to the first *K* next hops chosen by the strategy.
- 3. Collect the first *R* trace responses that come back before a timeout *TO* expires, discard the rest.
- 4. Combine the responses into one (how?) and send it back.

NDN-Trace: Request

NDN-Trace: Reply

NDN-Trace: Router Behavior

Reply forwarding/aggregation: two approaches

- Hop-by-hop wrapping and signing, maintains existing signatures
- Discard signature, re-sign, send downstream

Trace process termination

- Producer
- Cache
- Either producer or cache, whichever is found first
- Abnormal termination
 - No route
 - ° Administratively prohibited

•

Bypassing the Forwarding Strategy

It can be argued that a path (next hop) that appears in FIB but would never be considered by a strategy is not a meaningful path.

- Some strategies do not use the FIB, e.g.:
 - Flooding strategy always floods.
 - ^o Self-learning strategy may flood. FIB may be empty.
 - Hyperbolic FIB (in eventual implementation) maps prefixes to coordinates instead of next hops. FIB does not contain next hops.
- Therefore the traceroute module should never look at the raw FIB entries without going through a strategy.

But what if we need to explore alternative paths that the current strategy would not consider?

^o Do we need this functionality, e.g. for strategy debugging?

NDN-Trace: Future Work

Currently exploring how to adapt NDN-Trace to take advantage of new features in NDN Packet Format v0.3

- Use **typed name components** to recognize trace Interests?
- Carry parameters in Interest Parameters TLV

Explore deployment/testing on the NDN Testbed

Lots more...