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Overview
• Context: Decentralized Web (and one slide on Zooko’s triangle)


• Secure Scuttlebutt (SSB) 
- as a social media app 
- as a technology foundation 
   (names, principles, assets, working model) 

• 1:1 comparison with NDN/CCN concepts


• Why SSB is significant


• Outlook 
- SSB challenges 
- ICNRG opportunities



(Re-) decentralizing the Web and more 

The 2nd Decentralized Web Summit (Jul/Aug 2018) revealed:


- big names from the past (Vint Cerf, Diffie Whitfield, Tim Berners-Lee) 
- a highly motivated crowd of enthusiasts (700 participants) 
- big enterprises watching and sometimes already engaging 
- hopeful startups 
- radical technology tinkerers.

Main theme: “privacy, security and freedom” 
- Freedom means: clawing back the Web from the centralization guys 
  the GAFA gang (Google, Apple, Facebook and Amazon)

Something important happened here, critical mass got together



“I was devastated” (Tim Berners-Lee, July 2018) 

FB, Cambridge Analytica just tip of the iceberg


“The increasing centralization of the Web has 
ended up producing [..] a large-scale emergent 
phenomenon which is anti-human.” 
 
“reclaim the Web from corporations and return it 
to its democratic roots” 

SOLID – SOcial LInked Data 
- ongoing project at MIT 
- started in 2016, lead by TBL



‘decent’ viewpoint (as seen by SOLID)

Paradigm shifts:



Decent viewpoint on “names”
Natural approach for decentralized identifier (mgmt):


    Use public key of random crypto key pair as identity 
    Problem: crypto keys not human-meaningful (e.g. memorable) 

Zooko’s Triangle (Zcash CEO): 
Conjectured that no single kind of name or id 
can achieve more than two of the three properties.


Example: DNSSec offers a decentralized, 
human-meaningful naming scheme, but is 
not secure against compromise by the root. 



SSB - as a social media app

Started 2014 in New Zealand by Dominic Tarr 
- group of ca 20 core developers with similar 
   social and discourse-aware mindset, “new eco”


• “social viewer” is main app, for themselves (—> next slide)


• Other apps running over SSB: 
git-ssb, “gathering” (calendar invite), book reviews 
some betas: chess, secret-sharing for key recovery



SSB “Patchwork” (viewer app)
• SSB is almost pure JavaScript, 

of high quality


• Excellent description of the 
security, RPC and gossip 
protocol


• Desktop browser is based on 
Electron, Android app in pre-
beta.



Replicated Logs and Subjective Readers
SSB has exactly one data pod per user


• Ground truth are the individual

    append-only logs:  
    - hash-chained signed messages 
    - replication via peer-to-peer fabric 


• “subjective reader”: 
locally reconstruct app-level data types 
(e.g. chat dialogue) from stitching together 
entries from each participant’s log
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Replicated append-only logs

Abstraction from how (protocol-wise) information updates are propagated: 
  what matters is that extensions of remote logs are securely brought to you
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Replicated append-only logs

Abstraction from how (protocol-wise) information updates are propagated: 
  what matters is that extensions of remote logs are securely brought to you

Make secure syncing on log extension the core network service 
                                                                                            (you MUST exclude all other data, anyway)
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SSB - social graph-based connectivity
Pure receiver-driven approach: only replicate what you are interested in 
(you never see content from a peer you are not interested in)


• “expressing an Interest” = “to follow a peer” 
- put a public “follow” statement in your log 
- forwarding elements will only forward log updates from followed peers 
- establishes a one-directional content delivery gradient, transitive

A B C

Bob follows Carol

Alice follows Carol

(Alice follows Bob)
social (control) plane

log updates from Clog updates from C
data plane



SSB - onboarding problem 
Social graph-based connectivity is unforgiving and cruel:


• at birth (=when trying to join SSB), nobody will talk to you: 
a) you do not know any peer’s public key 
b) even if you knew some peer (out of band), they would not serve 
    content to you because they don’t follow you


• you need to be introduced (adopted) by an existing SSB user


• Technically: use mDNS/local broadcast/QR codes for first encounter and 
starting to replicate a peer’s log


• Real social control plane: PGP’s web of trust, signing party style onboarding



Overview of SSB’s technical merits
• Uses fast ED25519 elliptic curve crypto (2012), the “decent de-facto standard”: 

1 key pair used for all (!) of: DH key exchange for RPC, encryption+signing of msgs

• e2e encryption and fully privacy-preserving handling of meta-data (up to 8 rcpts) 
(must attempt decrypting all messages from friends, set of friends is public, though.

• Gossip-based content dissemination 
- scaling comes from p2p and restricting replication to your friends

• Extremely delay-tolerant: works over the Internet or “pocket switching” (USB 
sticks)

• Highly resilient: I destroyed my append-only log, and got it back from my 
“followers” (who keep a full replica of my log).



Format of SSB log records
JSON-based encoding 
 
{  
  "author": "@AiBJDta+4boyh2USNGwIagH/wKjeruTcDX2Aj1r/haM=.ed25519", 
  "sequence": 48, 
  "previous": "%9itfeYbt8EXCy8v04TrUevsw37momPxBoM/NFX3cRpE=.sha256", 
  "timestamp": 1534460709199, 
  "hash": "sha256", 
  "content": "RDKMZ4gcfdb…B44V3A==.box", 
  "signature": “Vwih8S1UOAzVqRvbYnQg…l3dj==.sig.ed25519" 
}  
 
Note: 
- hash chain (‘previous’ field) 
- full name of producer (‘author’ field), so that signature can be validated without cert



RPC - Secure Handshake (SHS)
• peers connect via homebrewn secure RPC protocol


• Secure Handshake (SHS): mutual authentication between the peers 
- important for privacy: 
  an observer cannot not see whose log was extended


• SHS establishes a bydirectional RPC channel: 
- both sides can send requests 
- one-time requests 
- also long lived streams (open-ended streams of updates -> notification)


• feels like “app-level multicast” with immediate notification (see “pub” relays)

https://ssbc.github.io/scuttlebutt-protocol-guide/



SSB over the Internet
• LAN: mDNS


• otherwise: SHS over TCP/IP port 8008


• “pub” nodes: serve as super node 
- stable Internet presence 
- their presence also put into logs, have a peer id (to be trusted)


• Recently: “EBT” — epidemic broadcast tree 
- gossiping content, reduce redundant propagation paths



Three (flat) Namespaces
• Principles (peers): public key   “@abcde….ed25519”


• Log records (messages): hash value   “%….==.sha256”


• file names “XX” 
(blobs shipped outside the gossip channel because too large)



1:1 comparison with ICN concepts
• tbd



Conclusions
ZERO need for an intermediary like FB, Twitter, Gmail etc,


yet secure, scalable, resilient, delay-tolerant, privacy-preserving ICN


• = everything a “decent-aware end user” wishes for 

• = everything an attractive ICN system should expose, running NOW 

Important SSB contribution IMHO: 
- identifying  replicated append-only logs  as foundational ICN service 
- secure propagation of the “data growth frontier”, sync at the same time


