
An Analysis of 
 Secure Scuttlebutt 
 as an ICN System

Christian Tschudin, University of Basel
Sep 24, 2018
ICNRG slides

Overview
• Context: Decentralized Web (and one slide on Zooko’s triangle)

• Secure Scuttlebutt (SSB) 
- as a social media app 
- as a technology foundation 
 (names, principles, assets, working model)

• 1:1 comparison with NDN/CCN concepts

• Why SSB is significant

• Outlook 
- SSB challenges 
- ICNRG opportunities

(Re-) decentralizing the Web and more

The 2nd Decentralized Web Summit (Jul/Aug 2018) revealed:

- big names from the past (Vint Cerf, Diffie Whitfield, Tim Berners-Lee) 
- a highly motivated crowd of enthusiasts (700 participants) 
- big enterprises watching and sometimes already engaging 
- hopeful startups 
- radical technology tinkerers.

Main theme: “privacy, security and freedom” 
- Freedom means: clawing back the Web from the centralization guys 
 the GAFA gang (Google, Apple, Facebook and Amazon)

Something important happened here, critical mass got together

“I was devastated” (Tim Berners-Lee, July 2018)

FB, Cambridge Analytica just tip of the iceberg

“The increasing centralization of the Web has 
ended up producing [..] a large-scale emergent
phenomenon which is anti-human.” 
 
“reclaim the Web from corporations and return it
to its democratic roots”

SOLID – SOcial LInked Data 
- ongoing project at MIT 
- started in 2016, lead by TBL

‘decent’ viewpoint (as seen by SOLID)

Paradigm shifts:

Decent viewpoint on “names”
Natural approach for decentralized identifier (mgmt):

 Use public key of random crypto key pair as identity 
 Problem: crypto keys not human-meaningful (e.g. memorable) 

Zooko’s Triangle (Zcash CEO): 
Conjectured that no single kind of name or id 
can achieve more than two of the three properties.

Example: DNSSec offers a decentralized, 
human-meaningful naming scheme, but is 
not secure against compromise by the root. 

SSB - as a social media app

Started 2014 in New Zealand by Dominic Tarr 
- group of ca 20 core developers with similar 
 social and discourse-aware mindset, “new eco”

• “social viewer” is main app, for themselves (—> next slide)

• Other apps running over SSB: 
git-ssb, “gathering” (calendar invite), book reviews 
some betas: chess, secret-sharing for key recovery

SSB “Patchwork” (viewer app)
• SSB is almost pure JavaScript,

of high quality

• Excellent description of the
security, RPC and gossip
protocol

• Desktop browser is based on
Electron, Android app in pre-
beta.

Replicated Logs and Subjective Readers
SSB has exactly one data pod per user

• Ground truth are the individual

 append-only logs:  
 - hash-chained signed messages 
 - replication via peer-to-peer fabric

• “subjective reader”: 
locally reconstruct app-level data types 
(e.g. chat dialogue) from stitching together 
entries from each participant’s log

Alice

Carol

Bob

Bob

Bob
Carol

Alice
Carol

Alicep2p

Replicated append-only logs

app

 Alice’s log

wr()

 Bob’s log replica

rd()

Replicated append-only logs

app

 Alice’s log

wr()

 Bob’s log replica

rd()

app

 Alice’s log replica

 Bob’s log

wr() rd()

Replicated append-only logs

app

 Alice’s log

wr()

 Bob’s log replica

rd()

app

 Alice’s log replica

 Bob’s log

wr() rd()

incremental, mutual log replication

Replicated append-only logs

Abstraction from how (protocol-wise) information updates are propagated: 
 what matters is that extensions of remote logs are securely brought to you

app

 Alice’s log

wr()

 Bob’s log replica

rd()

app

 Alice’s log replica

 Bob’s log

wr() rd()

incremental, mutual log replication

Replicated append-only logs

Abstraction from how (protocol-wise) information updates are propagated: 
 what matters is that extensions of remote logs are securely brought to you

Make secure syncing on log extension the core network service 
 (you MUST exclude all other data, anyway)

app

 Alice’s log

wr()

 Bob’s log replica

rd()

app

 Alice’s log replica

 Bob’s log

wr() rd()

incremental, mutual log replication

SSB - social graph-based connectivity
Pure receiver-driven approach: only replicate what you are interested in 
(you never see content from a peer you are not interested in)

• “expressing an Interest” = “to follow a peer” 
- put a public “follow” statement in your log 
- forwarding elements will only forward log updates from followed peers 
- establishes a one-directional content delivery gradient, transitive

A B C

Bob follows Carol

Alice follows Carol

(Alice follows Bob)
social (control) plane

log updates from Clog updates from C
data plane

SSB - onboarding problem
Social graph-based connectivity is unforgiving and cruel:

• at birth (=when trying to join SSB), nobody will talk to you: 
a) you do not know any peer’s public key 
b) even if you knew some peer (out of band), they would not serve 
 content to you because they don’t follow you

• you need to be introduced (adopted) by an existing SSB user

• Technically: use mDNS/local broadcast/QR codes for first encounter and
starting to replicate a peer’s log

• Real social control plane: PGP’s web of trust, signing party style onboarding

Overview of SSB’s technical merits
• Uses fast ED25519 elliptic curve crypto (2012), the “decent de-facto standard”: 

1 key pair used for all (!) of: DH key exchange for RPC, encryption+signing of msgs

• e2e encryption and fully privacy-preserving handling of meta-data (up to 8 rcpts) 
(must attempt decrypting all messages from friends, set of friends is public, though.

• Gossip-based content dissemination 
- scaling comes from p2p and restricting replication to your friends

• Extremely delay-tolerant: works over the Internet or “pocket switching” (USB
sticks)

• Highly resilient: I destroyed my append-only log, and got it back from my
“followers” (who keep a full replica of my log).

Format of SSB log records
JSON-based encoding 
 
{  
 "author": "@AiBJDta+4boyh2USNGwIagH/wKjeruTcDX2Aj1r/haM=.ed25519", 
 "sequence": 48, 
 "previous": "%9itfeYbt8EXCy8v04TrUevsw37momPxBoM/NFX3cRpE=.sha256", 
 "timestamp": 1534460709199, 
 "hash": "sha256", 
 "content": "RDKMZ4gcfdb…B44V3A==.box", 
 "signature": “Vwih8S1UOAzVqRvbYnQg…l3dj==.sig.ed25519" 
}  
 
Note: 
- hash chain (‘previous’ field) 
- full name of producer (‘author’ field), so that signature can be validated without cert

RPC - Secure Handshake (SHS)
• peers connect via homebrewn secure RPC protocol

• Secure Handshake (SHS): mutual authentication between the peers 
- important for privacy: 
 an observer cannot not see whose log was extended

• SHS establishes a bydirectional RPC channel: 
- both sides can send requests 
- one-time requests 
- also long lived streams (open-ended streams of updates -> notification)

• feels like “app-level multicast” with immediate notification (see “pub” relays)

https://ssbc.github.io/scuttlebutt-protocol-guide/

SSB over the Internet
• LAN: mDNS

• otherwise: SHS over TCP/IP port 8008

• “pub” nodes: serve as super node 
- stable Internet presence 
- their presence also put into logs, have a peer id (to be trusted)

• Recently: “EBT” — epidemic broadcast tree 
- gossiping content, reduce redundant propagation paths

Three (flat) Namespaces
• Principles (peers): public key “@abcde….ed25519”

• Log records (messages): hash value “%….==.sha256”

• file names “XX” 
(blobs shipped outside the gossip channel because too large)

1:1 comparison with ICN concepts
• tbd

Conclusions
ZERO need for an intermediary like FB, Twitter, Gmail etc,

yet secure, scalable, resilient, delay-tolerant, privacy-preserving ICN

• = everything a “decent-aware end user” wishes for

• = everything an attractive ICN system should expose, running NOW

Important SSB contribution IMHO: 
- identifying replicated append-only logs as foundational ICN service 
- secure propagation of the “data growth frontier”, sync at the same time

