QoS in Information-Centric Networks
Disaggregated Name Component Approach

Anil Jangam, Prakash Suthar, Milan Stolic
ICNRG Interim Meeting, IETF-103 Bangkok, Thailand, November 4, 2018
Outline

• Motivation
• Name based QoS encoding
• Network procedures
• Discussion
• Summary & future work
Motivation

• A new approach towards implementing name-based QoS in ICN
• Our earlier DSCP based QoS design was based on IP primitives
 • https://datatracker.ietf.org/doc/draft-anilj-icnrg-icn-qos/
• A new proposal is inspired by our interpretation and feedback we provided to the ICN flow-classification draft
 • https://www.ietf.org/mail-archive/web/icnrg/current/msg02619.html
Our Interpretation of Flow-class and QoS

Some important differences between flow-classification and name-based QoS marking

<table>
<thead>
<tr>
<th>Flow-classifier</th>
<th>QoS Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify the type of data flow</td>
<td>Identify the treatment for data flow</td>
</tr>
<tr>
<td>Set by the producer</td>
<td>Set by the consumer</td>
</tr>
<tr>
<td>Immutable for the lifetime of Interest</td>
<td>May be modified in the network</td>
</tr>
<tr>
<td>Part of routable name</td>
<td>Not used in prefix matching</td>
</tr>
</tbody>
</table>
Name-based QoS Encoding

- Improvement over DSCP based QoS
- Disaggregated name components
QoS Marker in the Content Name

- Contrary to encoding of DSCP codes in the Interest body, QoS markers information is encoded in the content name.

- More **space** compared to limited (1 byte) of DSCP field
 - Finite number of QoS markers, but large enough compared to the number of DSCP codes.

- A **naming scheme** to be used to define name based QoS markers
 - Can follow either flat or hierarchical naming scheme.

- QoS marker can be encoded in content name similar to path parameters in HTTP URI.
What are Path Parameters?

- Path parameters are variable parts of a URL path, which are used to point to a specific resource within a collection e.g. a user identified by ID
 - https://swagger.io/docs/specification/describing-parameters/#path-parameters

- URIs often use reserved characters allowed in a segment to delimit scheme-specific or dereference-handler-specific subcomponents
 - The semicolon (";") and equals ("=") reserved characters are often used to delimit parameters and parameter values applicable to that segment
 - https://tools.ietf.org/html/rfc3986#section-3.3 (last paragraph)

- CCNX also provides a mechanism (application payload name segments)
 - More investigation required to check if this can be used
 - Refer section 3.6.1.1@draft-irtf-icnrg-ccnxmessages-08.txt
Disaggregated Name Components

- A logical separation and independence between the content name and the QoS marker
 - Content name is the **routable** component of the name
 - QoS marker is **non-routable** component of the name
- Separation between content name and the QoS marker can be modeled similar to **path parameters** used in HTTP URI

![Diagram showing the disaggregated name components]

Content name (as sent by consumer)

/this/is/content/name/this/is/qos(marker

Routable name component Non-routable name component

Note: This is just a logical representation, actual encoding details are being worked upon
Network Procedures

- Consumer behavior
- Forwarder behavior
- Producer behavior
Consumer Procedure

• Consumer sends out the Interest into the network and adds the QoS marker per his service subscription and/or quality needs
 • If consumer does QoS marking, it may be able to add it as name parameter (i.e. as path parameter) in the content name
 • If network does QoS marking, it has to put it in a separate field of the message
 • It shall be based network’s (e.g. MME or AMF) authentication of user’s subscription

• Questions:
 • Should we allow the network (forwarder) to modify the QoS marker, i.e. non-routable component of the content name?
 • Should we design the QoS marking such that the relationship between the consumer’s SLA and its QoS marking is explicit?
Forwarder Procedure

• Forwarder preserves the **QoS marker against the Interface** it receives the Interest on
 • Enhancement to PIT to map the QoS marker against the Interface (in addition to name)

• Forwarder **forwards** the Interest only **using the routable name** component
 • Unlike PIT, there is no change in the FIB table; however, both (content name and QoS marker) are forwarded to upstream router

• Forwarder may **use QoS marker** in the **forwarding decision** for example:
 • Selecting a low delay (high b/w) over a high delay (low b/w) interface (QoS aware forwarding)

• Questions:
 • After upstream interface is selected, how to map QoS marking with the queue?
 • Should we allow **remarking** of QoS and is one marker enough for it?
 • Preserve original marker added by subscriber and have a running marker set by the network
 • How does user of the system know what network is doing with their QoS marking?
Producer Procedure

• Producer is aware of disaggregation between QoS marker and routable name and looks up the content using routable name component.

• The way producer hands over the Data packet to the network may depend on the QoS marker it receives in an Interest.

• Producer may respond with a Data packet depending on the QoS marker.
 • This could be an in-network content adaptation scenario.
 • **Question**: should/can the content with same name be preserved with two different formats (i.e. original and transcoded)?

• If content is found in an intermediate router node’s content cache, it follows the same producer behavior as described above.
Discussion

- Enhancement to PIT
- Multiple Interest handling
- Multiple Interest optimization
- Mutable QoS Markers
- Advantages
PIT Enhancement

- PIT to maintain the mapping of Interface + Content Name + QoS Marker

<table>
<thead>
<tr>
<th>Interface</th>
<th>Content name</th>
<th>QoS marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>/face-1</td>
<td>/this/is/content/name</td>
<td>/this/is/qos/marker-1</td>
</tr>
</tbody>
</table>
Multiple Interest Handling (PIT Scaling Issue)

- Assume that multiple Interests (for same content) are received on the same Interface, but with different QoS markings
 - Since QoS markers are different, forwarder forwards both the Interests upstream, creating two PIT entries as shown in the table

- In order to support this, the PIT aggregation to be loosened up proportional to the number of unique QoS markers (for given content)
 - If not, upstream forwarder looses an opportunity to obey each of the QoS treatment
 - The upper bound on the PIT scaling will be equal to number of QoS markers

- The impact on PIT scaling can be minimized by
 - Keeping the # of QoS markers limited
 - In real-time case, we may not hit this upper bound all the times
 - Using an optimization in multiple Interest handling (described on next slide)
Multiple Interest Optimization at Forwarder
(Dealing with PIT Scaling Issue)

- **Forward** the second (duplicate) Interest only if receives **with a higher QoS marking** than the one already pending in PIT
 - **Replacing** existing PIT entry with higher QoS marking from the new Interest
 - Aggregation based on highest QoS marker for given content name
 - **Updating** existing PIT entry irrespective of the interface the Interest is received on
 - An efficient PIT design to optimally aggregate the QoS markers is required
 - Design shall be based on hierarchical/ordered set of QoS marking in PIT entry
 - Data to the downstream Interface goes either with its original QoS marking or with a higher QoS marking updated by second (duplicate) Interest
 - **Do not forward** the second (duplicate) Interest **with a lower QoS marking** for which an Interest with higher QoS marking is already pending
 - Most likely or not, Data with higher QoS marking shall return faster than the Data with lower QoS marking
 - As a result, a user with lower quality subscription may experience a better response time from the network
 - This is a legit behavior, as ICN is fundamentally designed to optimize the network round-trip time
Forwarder Behavior on Data Arrival

• The arrival of Data packet to satisfy all PIT entries against the content name, in addition to the QoS markers in Data packet

• Two possibilities depending on the type of QoS marker aggregation in PIT
 • If aggregation with the highest QoS marker (PIT replacement) for given content name
 • Data arrival satisfy all the pending Interest irrespective of the received QoS marker
 • Data forwarded to all the Interests recorded in the PIT for given name
 • If aggregation is done with a hierarchical/ordered set of QoS markers
 • Data arrival to satisfy all the pending Interests with QoS marker \leq the QoS marker in the Data packet

• The hierarchical/ordered set aggregation is more flexible and it performs the Data forwarding close to the original QoS marking

\leq : less than or equal to
Where QoS Marker Mutation Might be Useful?

- QoS mutation could be implemented as control against abuse
 - This could be performed by the network (MME/AMF, forwarder) or producer
 - Network override or overwrite the QoS marking set by the client
- Used by forwarder to update the QoS marker in the PIT entry
 - Assuming forwarder uses highest QoS marker based PIT aggregation
- QoS mutation mapping
 - Map from-to when ICN QoS marker needs to be altered
- Some other use cases that may be related to QoS mutation (to be explored)
 - Dynamic traffic shaping and/or rate control to adaptively and intelligently react to and resolve the network traffic problems
 - Fine control of QoS management in real-time streaming application
 - New opportunities to use of AI/ML in the networking
Advantages

• A flexible scheme by virtue of disaggregation of routable name component and non-routable name component

• QoS markers potentially can be designed to achieve both flow classification as well as QoS based scheduling in the network
 • This is a second level design problem

• The independence of routable name component and the QoS marker, does not impact the (FIB) scaling
 • An opportunity to implement QoS sensitive/aware routing/forwarding decisions

• Mutable QoS markers makes it possible to change the QoS between the two router nodes within same domain (intra service provider n/w) or two router nodes across two domains (inter service provider n/w)
 • If we consider a per-hop-behavior in the QoS processing
Summary & Future Work

• An improved QoS mechanism compared to the DSCP based approach

• Disaggregation of routable content name and non-routable, mutable QoS markers provides better flexibility

• Independence between content name and QoS marking makes their evolution much easier and yet bounded to content name keeping with ICN principles

• A potential impact on PIT scaling and an optimization to deal with the problem
 • Number of pending Interests requests in PIT for same content to be normalized around the highest QoS marking (more detailed look required)

• Future plans
 • Evaluate the impact on PIT aggregation and effect of optimization
 • Design a naming scheme/standard for QoS marking
 • Explore if/how QoS marking scheme can also be used for flow classification