Recent Trends in Constraint Optimization and Satisfaction

Nina Narodytska

VMware Research

Introduction

- 1. PhD, Optimization Research Group, NICTA, Australia
 - Inference algorithms for global constraints (Toby Walsh)
- 2. Postdoc. Researcher, Univ. of Toronto and Carnegie Mellon Ur Stro
 - Boolean optimization solver (Fahiem Bacchus@UofT, Ed Clarke@CMU)
- 1. Researcher, Samsung Research America
 - Machine learning for computer vision
- 2. Researcher, VMware Research
 - Applied optimization (for software verification)
 - Interpretable ML

Carnegie

Jniversity

elon

Outline

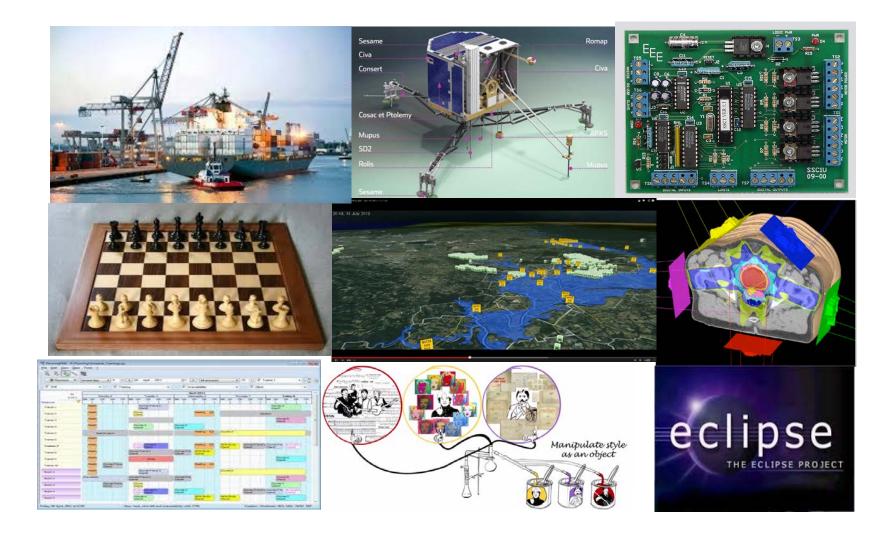
Constraint satisfaction and optimization

- Problem modeling
- Basic principles of constraint solving
- Learning mechanisms
- Solvers landscape

• Solver independent modelling

• Advantages and disadvantages

Constraint satisfaction



- Hard from theoretical point of view (NP-hard, P-Space)
- Efficient in practice in many application domains

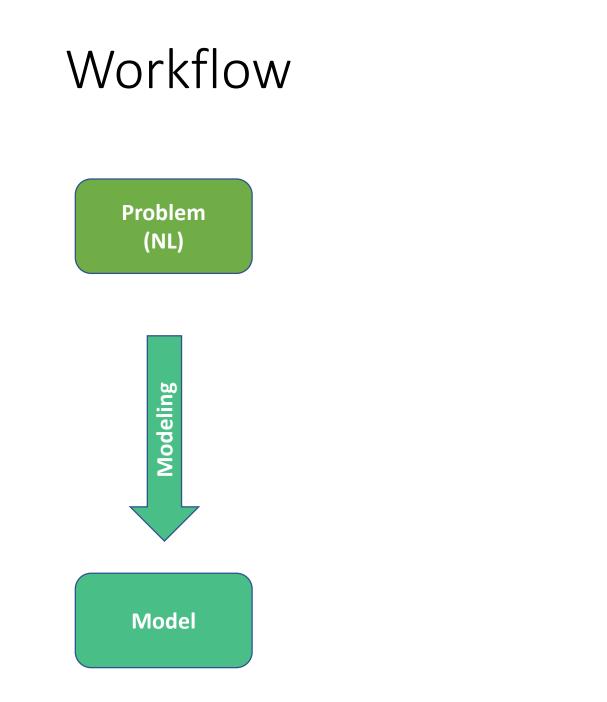
- Hard from theoretical point of view (NP-hard, P-Space)
- Efficiently solved in practice in many application domains
- Size of the problem is not a good measure of practical hardness

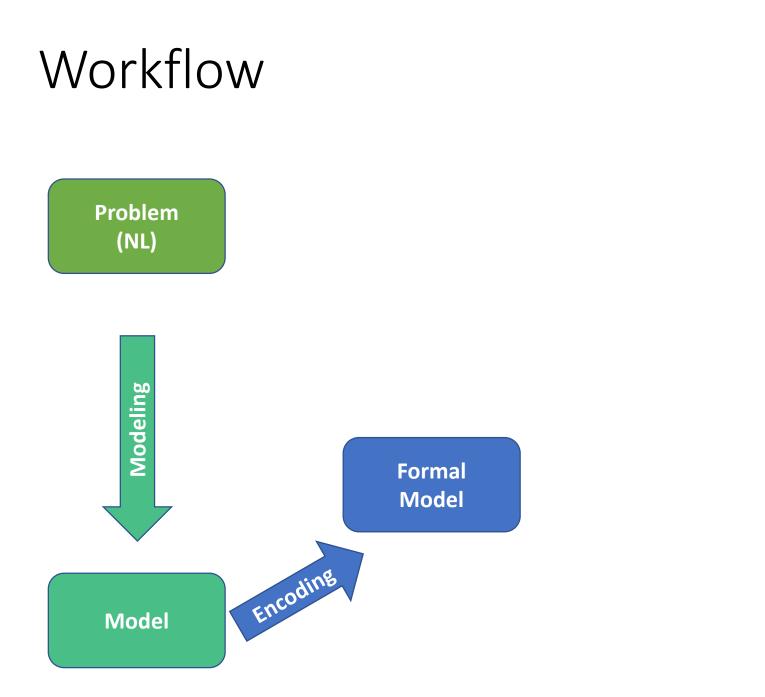
 Small random problems can be very hard for SAT/BDD based techniques (< 100 variables)

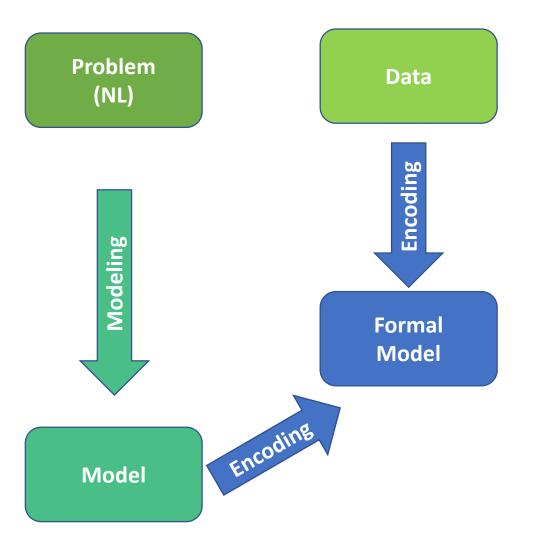
 Very large industrial structured problems can be efficiently solved (> 100 000 variables)!

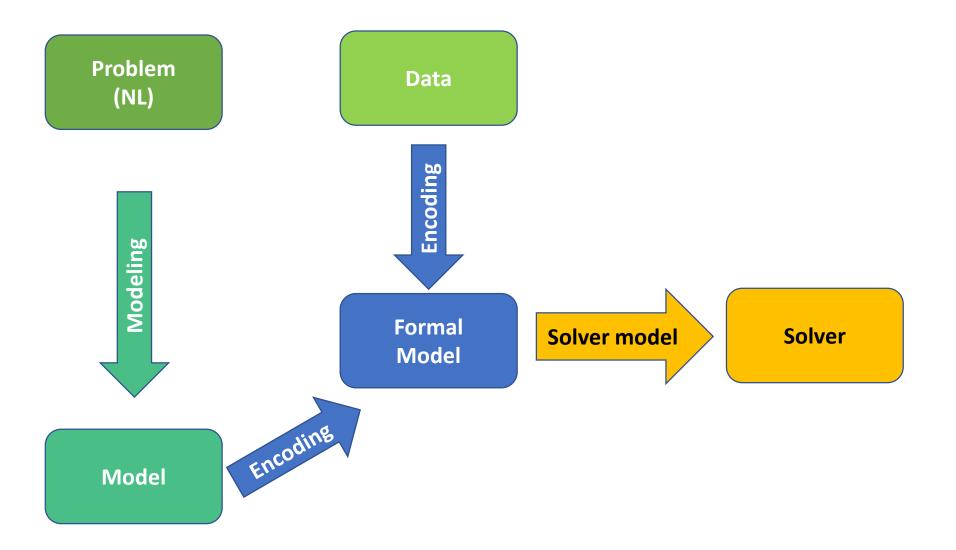
Schematic workflow

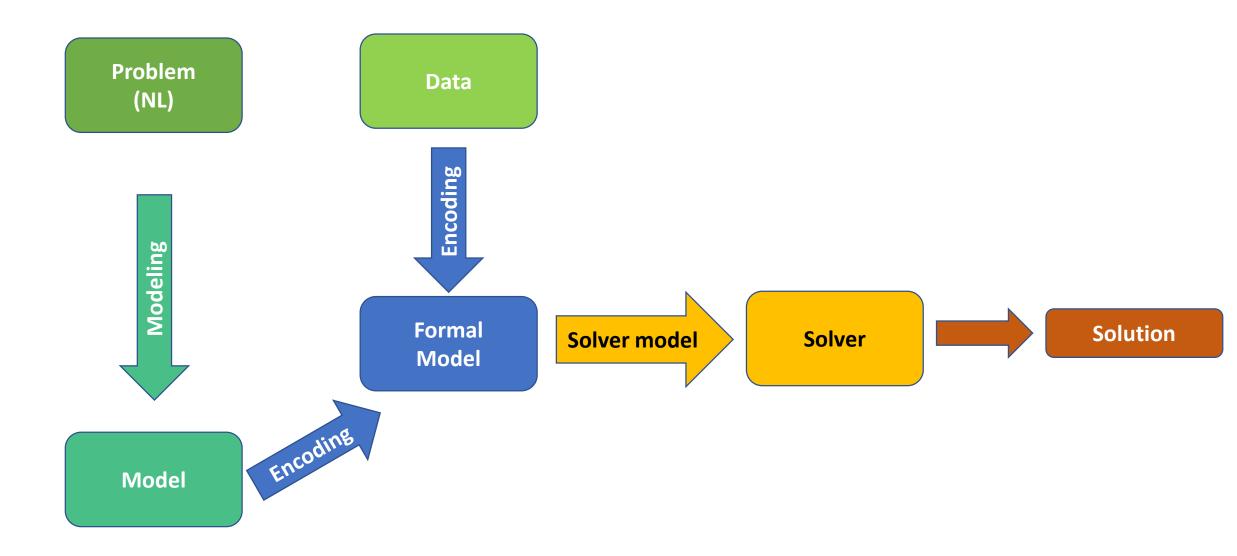
Problem (NL)

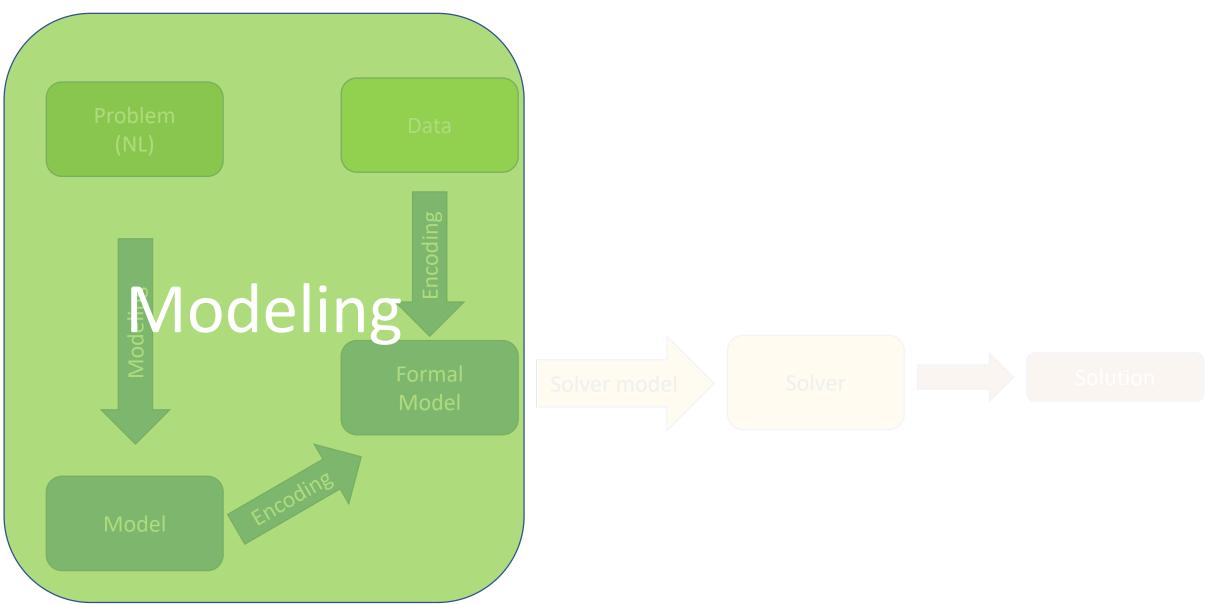


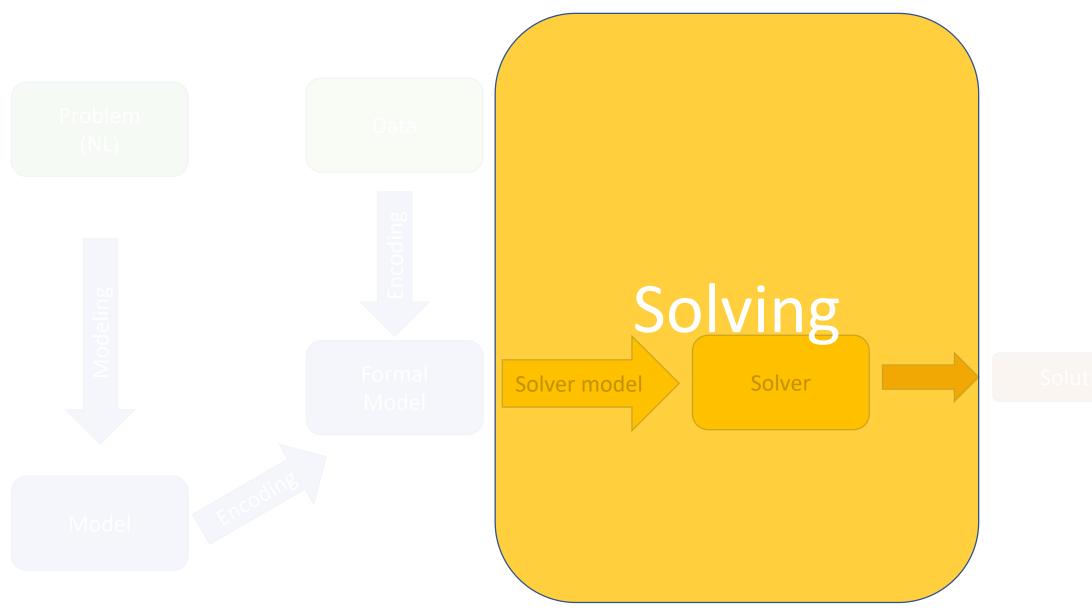












Overview



Solving

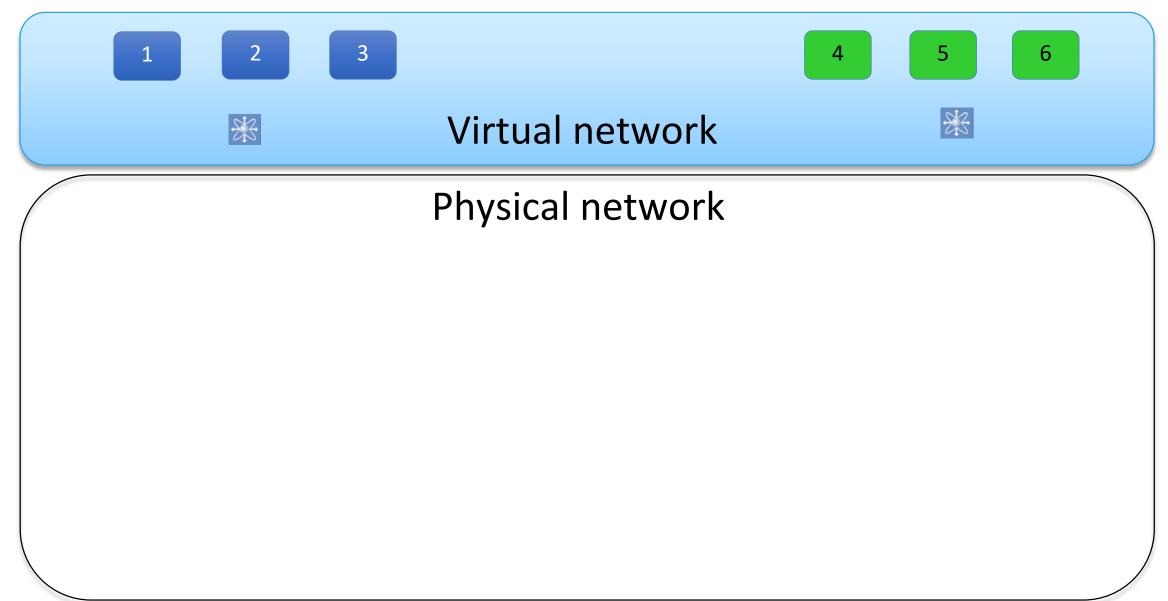
Use

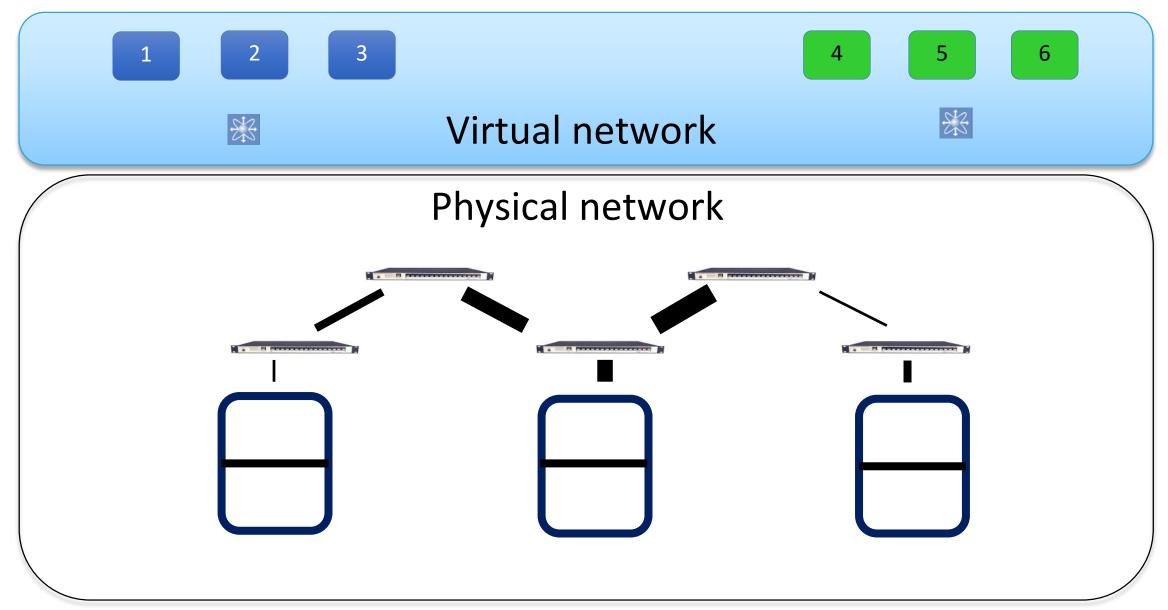
Bandwidth Allocation Problem (running example)

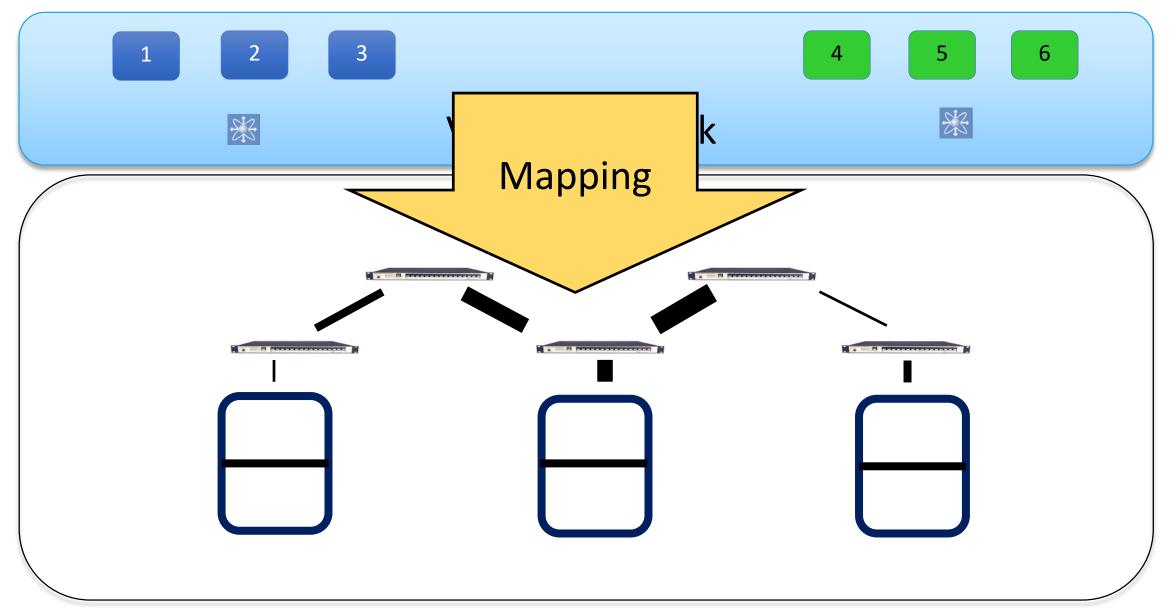
On the feasibility of automation for bandwidth allocation problems in data centers Y. Yuan, A. Wang, R. Alur, B. Thau Loo, FMCAD'2013

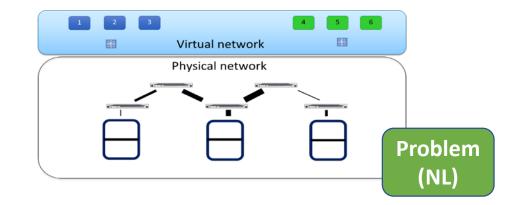
Virtual network

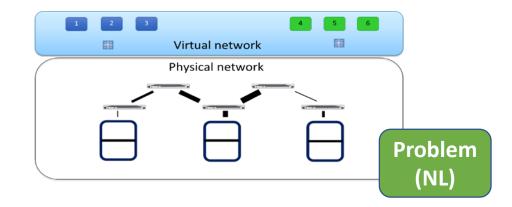
Physical network

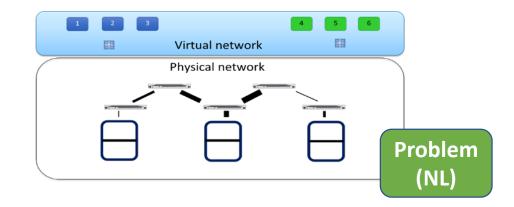






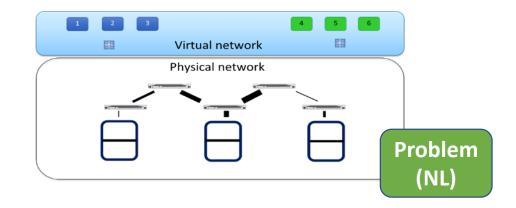




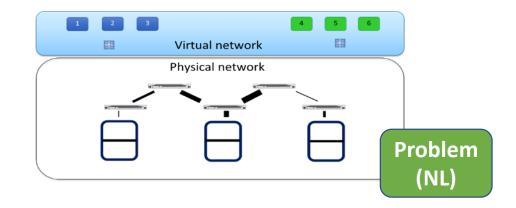


Logical constraints:

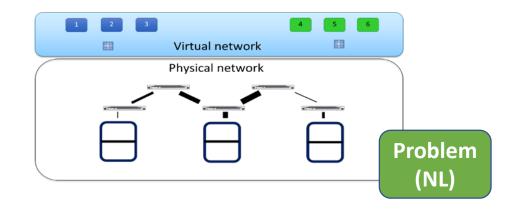
• each VM is mapped to a host server



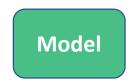
- each VM is mapped to a host server
- for each link between VMs, there is a routing path between the corresponding host servers

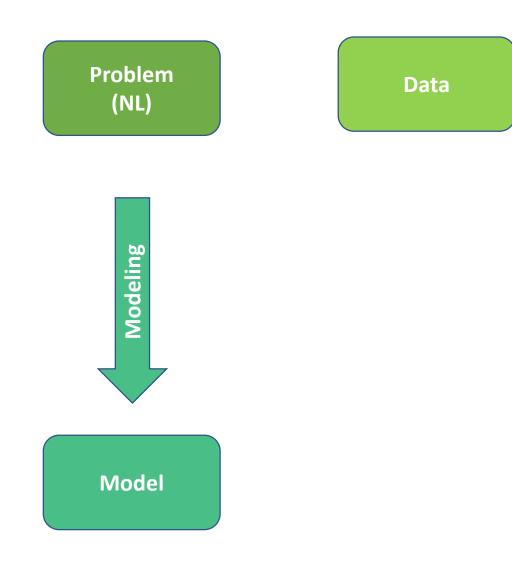


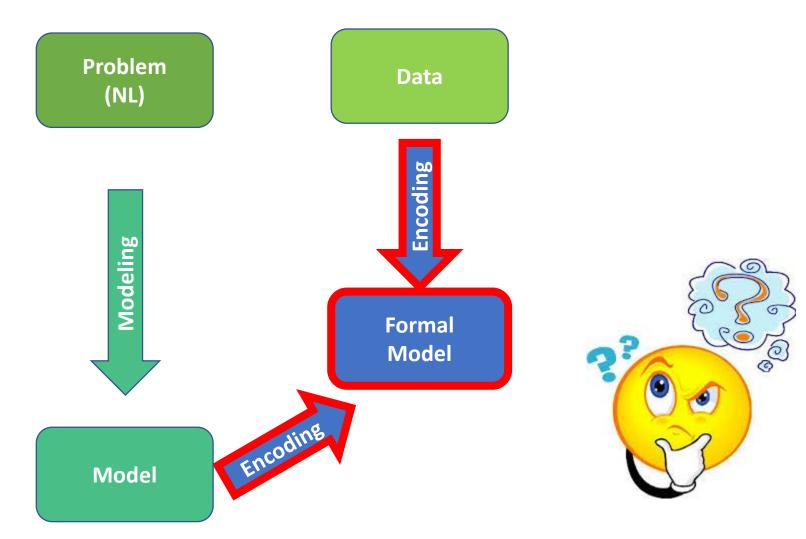
- each VM is mapped to a host server
- for each link between VMs, there is a routing path between the corresponding host servers
- capacity constraints on servers



- each VM is mapped to a host server
- for each link between VMs, there is a routing path between the corresponding host servers
- capacity constraints on servers
- capacity constraints on links







Problem modeling

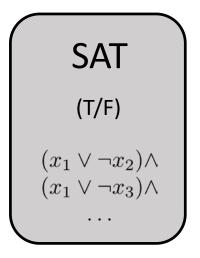
Solvers modeling language

Problem modeling

Solvers modeling language

Problem modeling

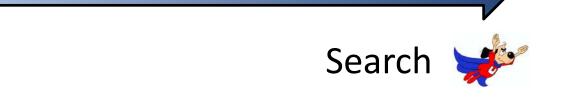
Solvers modeling language



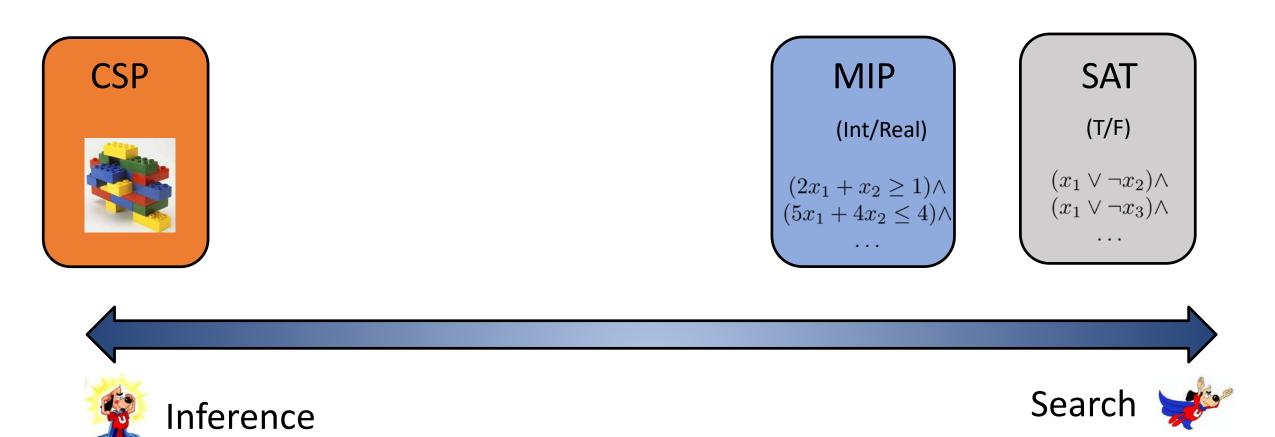
Solvers modeling language

Inference

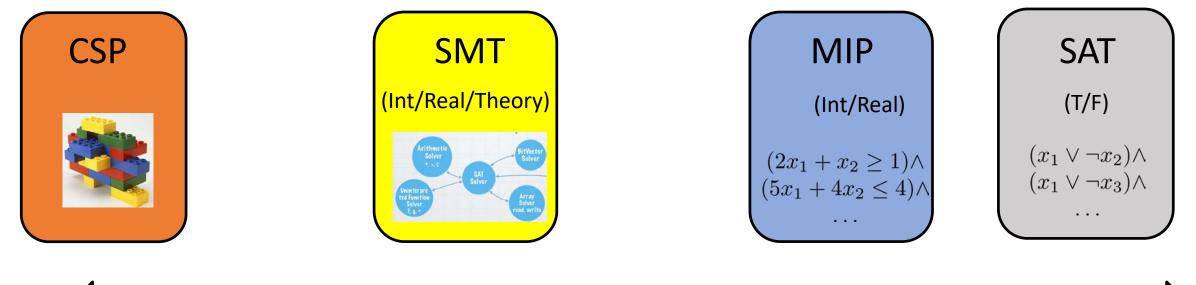
SAT (T/F) $\begin{array}{c} (x_1 \vee \neg x_2) \wedge \\ (x_1 \vee \neg x_3) \wedge \end{array}$

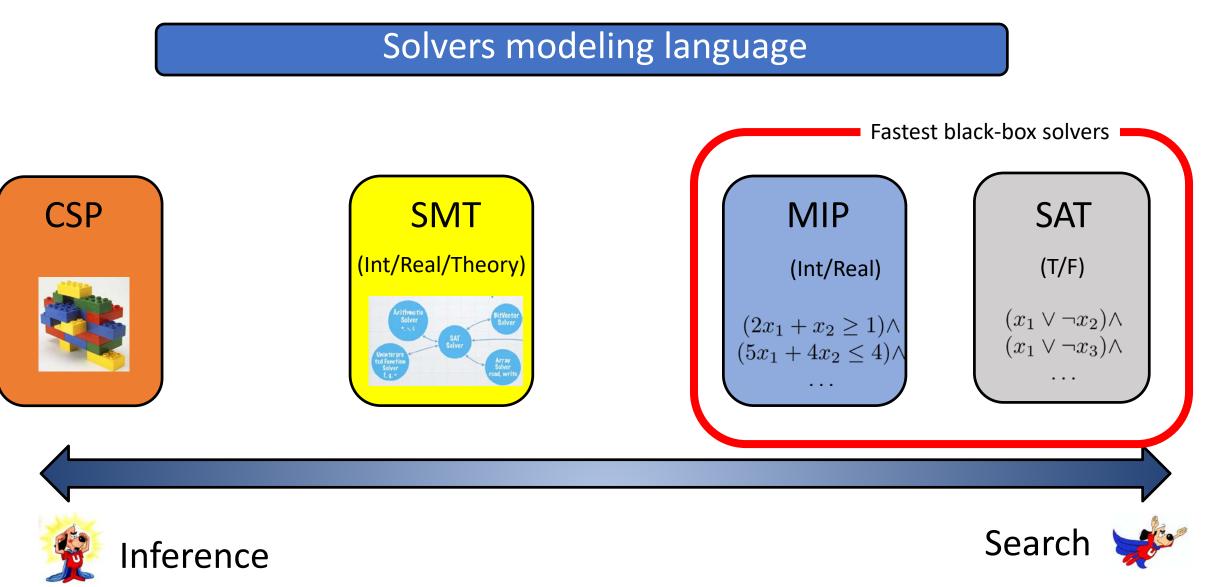


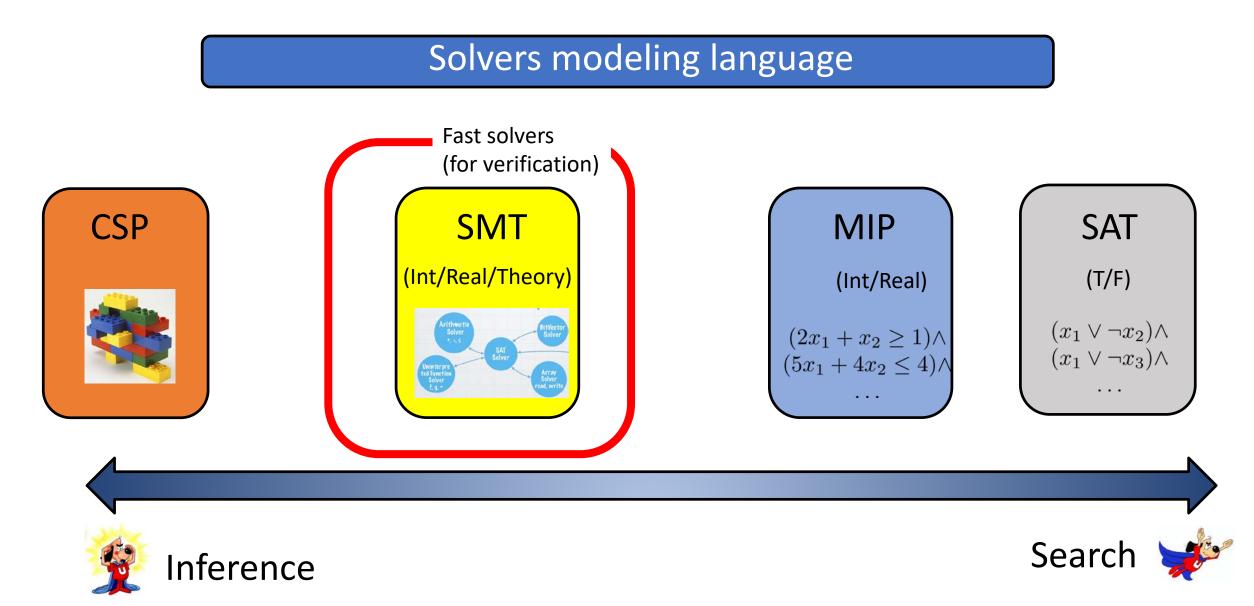
Solvers modeling language

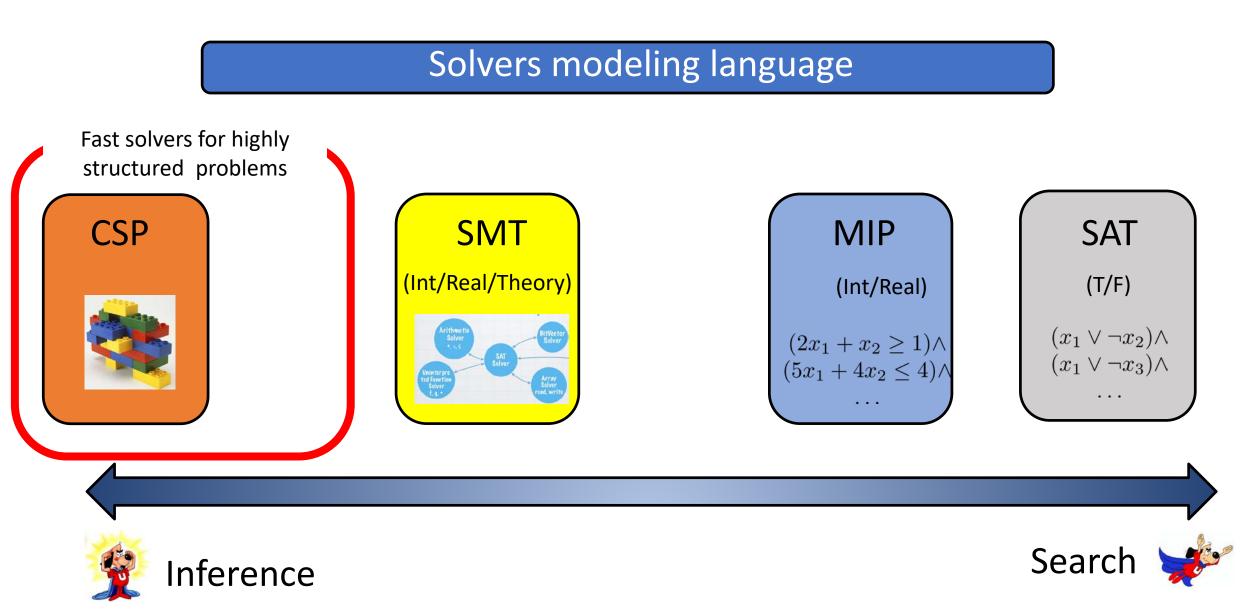


Solvers modeling language

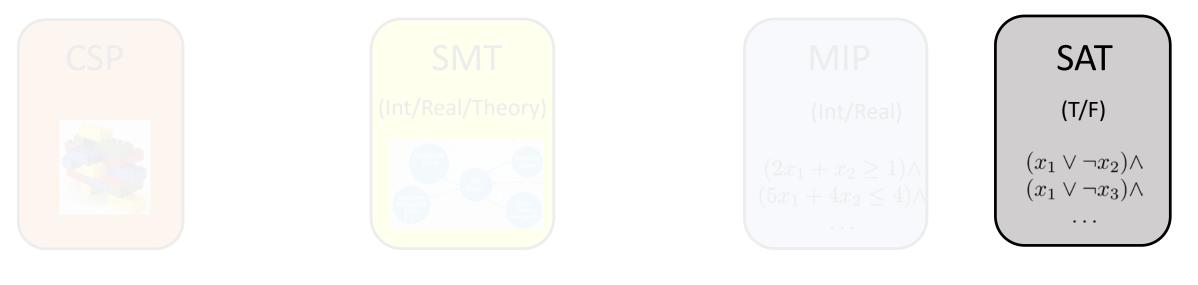








Solvers modeling language



Consists of a set of Boolean variables and clauses

$$x_1, x_2, x_3$$
 t $\neg x_i$

Consists of a set of Boolean variables and clauses

$$x_1, x_2, x_3$$
 t $\neg x_i$

$$C_1 = (x_1)$$
 $C_3 = (x_1 \lor x_2)$
 $C_2 = (x_2)$ $C_4 = (\neg x_1 \lor \neg x_3)$

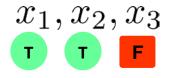
Consists of a set of Boolean variables and clauses

$$x_1, x_2, x_3$$
 T $\neg x_i$

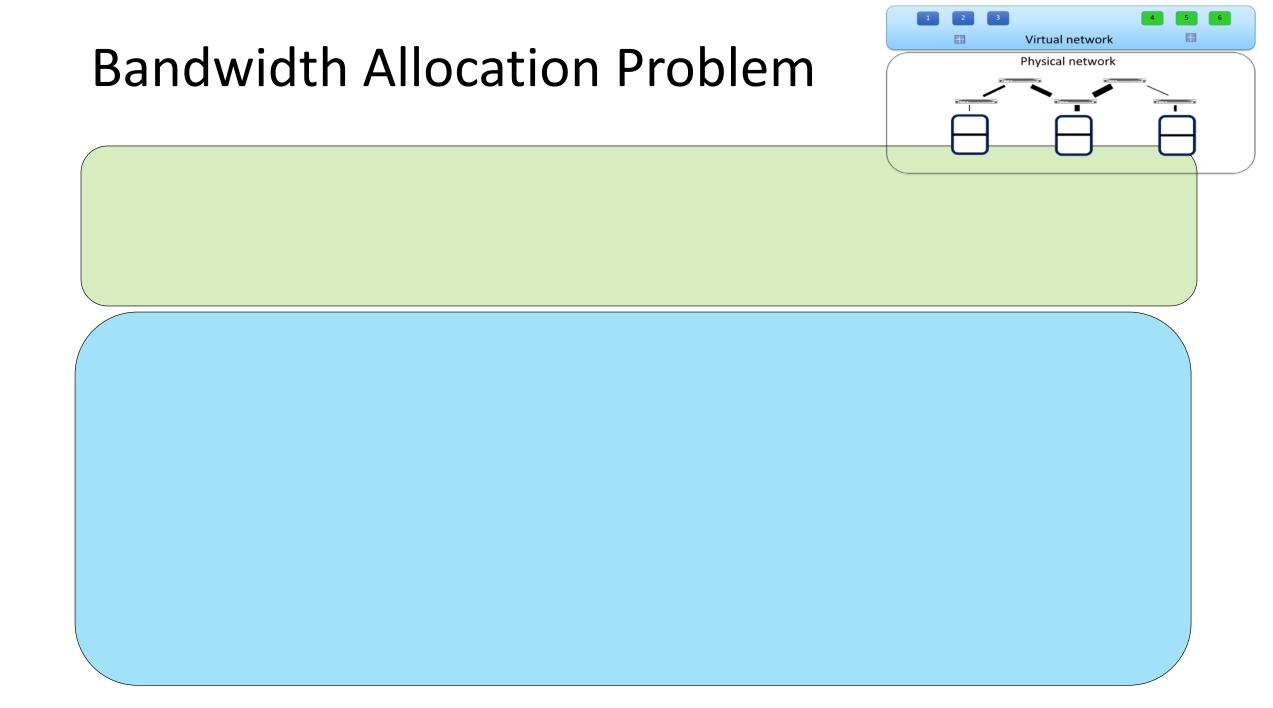
Goal: find an assignment that satisfies all clauses

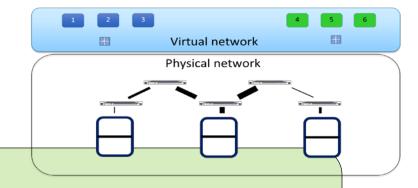
$$C_1 = (x_1)$$
 $C_3 = (x_1 \lor x_2)$
 $C_2 = (x_2)$ $C_4 = (\neg x_1 \lor \neg x_3)$

Consists of a set of Boolean variables and clauses



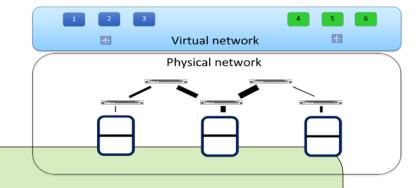
$$C_1 = (x_1) \qquad C_3 = (x_1 \lor x_2)$$
$$C_2 = (x_2) \qquad C_4 = (\neg x_1 \lor \neg x_3)$$





 $\forall v \in VM, \forall s \in Server X(v, s) \in \{0, 1\}$

X(v,s) = 1 iff v is hosted in s

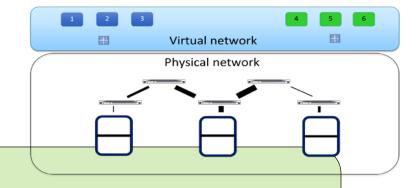


 $\forall v \in VM, \forall s \in Server \ X(v, s) \in \{0, 1\}$

X(v,s) = 1 iff v is hosted in s

(1) each VM is mapped to a host server

 $\bigwedge_{v \in \text{VM}} \left(\sum_{s \in \text{Servers}} X(v, s) = 1 \right)$



 $\forall v \in VM, \forall s \in Server \ X(v, s) \in \{0, 1\}$

X(v,s) = 1 iff v is hosted in s

(1) each VM is mapped to a host server

 $\bigwedge_{v \in \text{VM}} \left(\sum_{s \in \text{Servers}} X(v, s) = 1 \right)$

(3) capacity constraints on servers

$$\bigwedge_{s \in \text{Servers}} \left(\sum_{v \in \text{VM}} X(v, s) \le \text{capacity}(s) \right)$$

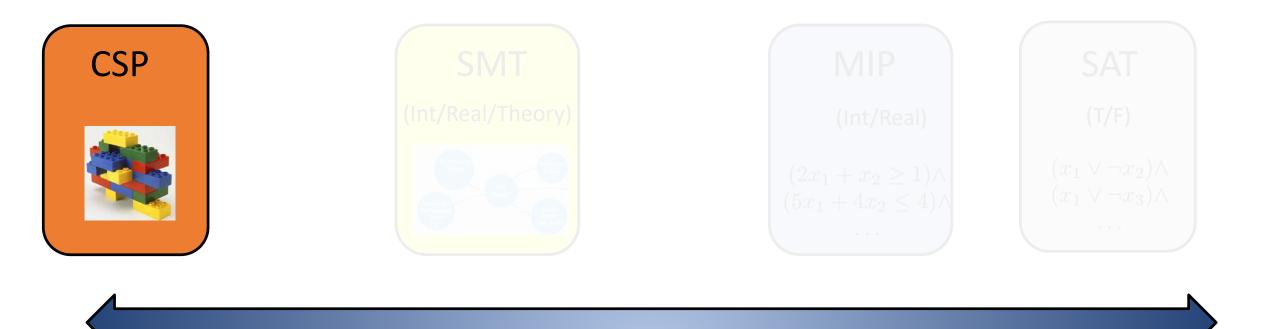
Complete search (CDCL search)

- finds a solution, otherwise
- guarantees that there are no solutions

Incomplete search (local search)

- finds a solution, otherwise
- no guarantees that there are no solutions

Solvers modeling language



CSP solvers

Consists of a set of integer (or set) variables and constraints

 x_1, x_2, x_3

Consists of a set of integer (or set) variables and constraints

 x_1, x_2, x_3

$$AllDifferent(x_1, x_2, \dots, x_n)$$
$$Regular(x_1, x_2, \dots, x_n, A)$$

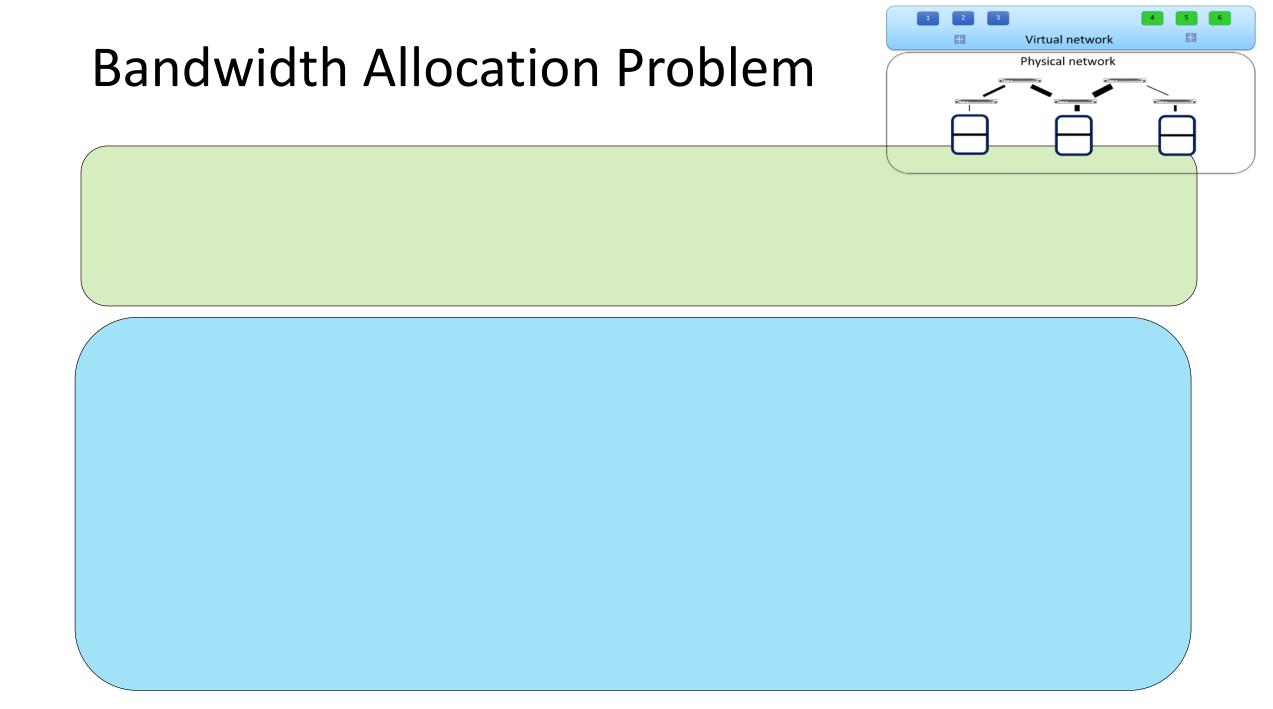
CSP solvers

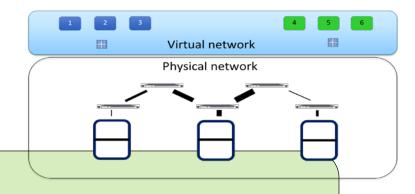
Consists of a set of integer (or set) variables and constraints

 x_1, x_2, x_3

Goal: find an assignment that satisfies all constraints

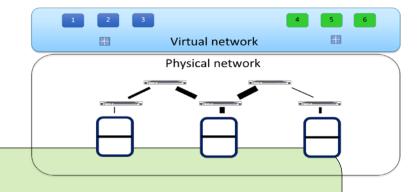
$$AllDifferent(x_1, x_2, \dots, x_n)$$
$$Regular(x_1, x_2, \dots, x_n, A)$$





 $\forall v \in \mathrm{VM}, X(v) \in \{1, 2, 3\}$

X(v) = s iff v is hosted in s

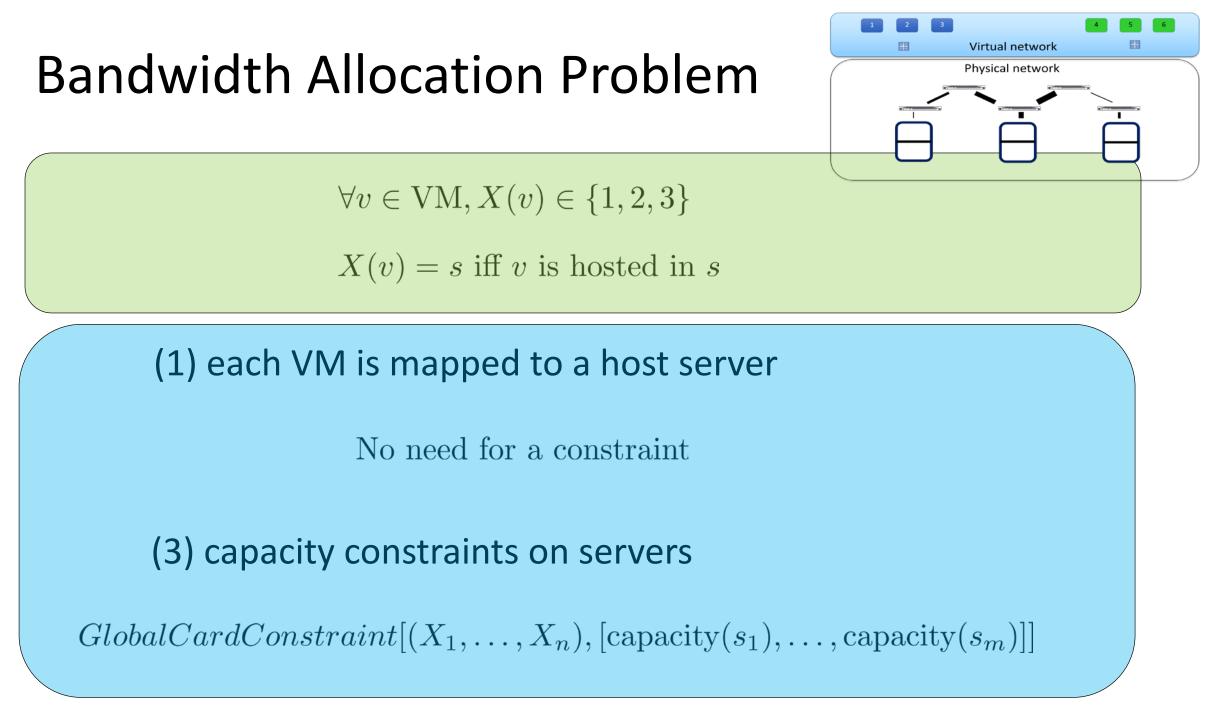


 $\forall v \in \mathrm{VM}, X(v) \in \{1, 2, 3\}$

X(v) = s iff v is hosted in s

(1) each VM is mapped to a host server

No need for a constraint



It depends!

Understand your problem (under-constrained, over-constrained)

- under-constrained are usually easy to solve by incomplete search
- over-constrained most likely have no solutions

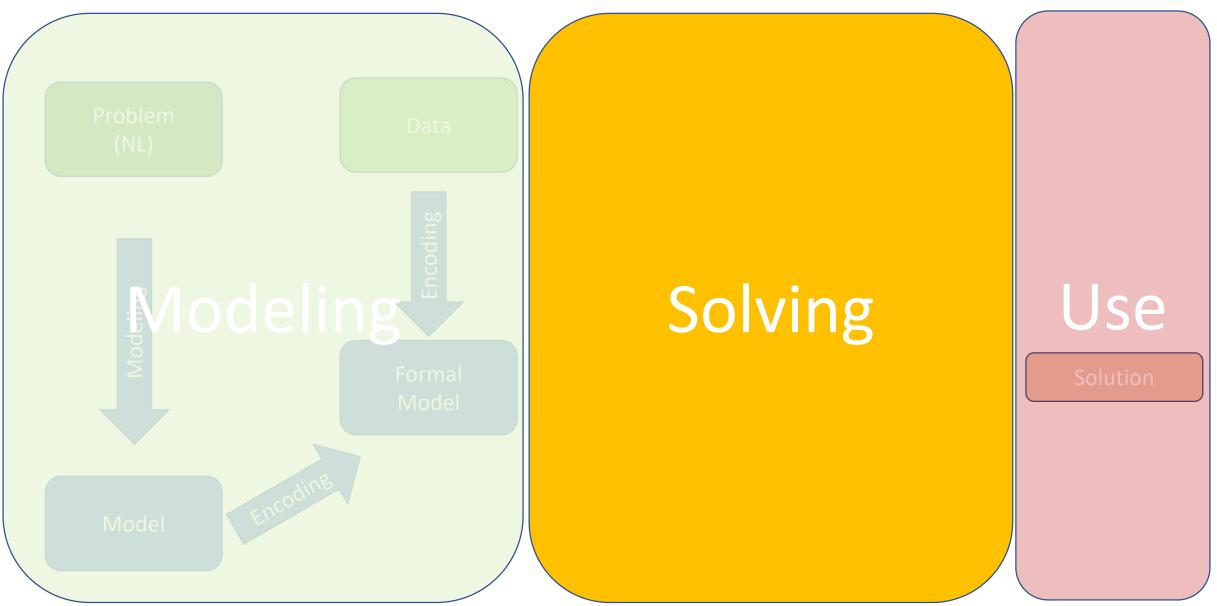
• Start with CP model. Use the simplest model possible. Most likely it will be slow.

- Start with CP model. Use the simplest model possible. Most likely it will be slow.
- Take advantage of domain specific information Remove model symmetry, problem decomposition , heuristics

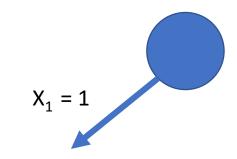
- Start with CP model. Use the simplest model possible. Most likely it will be slow.
- Take advantage of the domain specific information Remove model symmetry, problem decomposition, heuristics
- Avoid using complicated variables, e.g. set variables It is very hard to reason about them efficiently

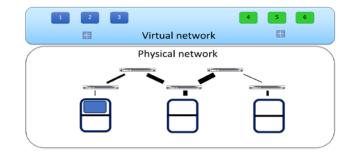
- Start with CP model. Use the simplest model possible. Most likely it will be slow.
- Take advantage of the domain specific information Remove model symmetry, problem decomposition, heuristics
- Avoid using complicated variables, e.g. set variables It is very hard to reason about them efficiently
- Relax constraints (e.g. use soft constraints instead of hard constraints)

Overview

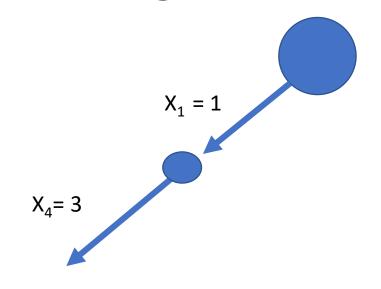


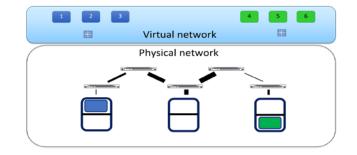
Backtracking search

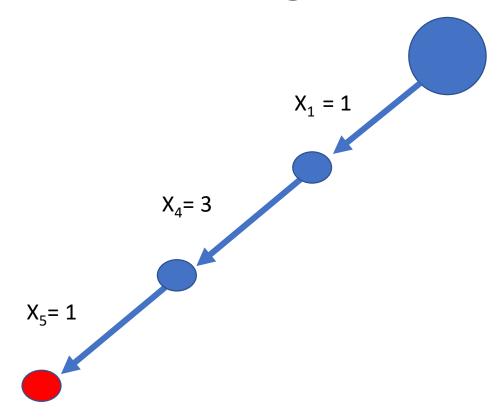


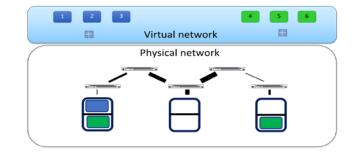


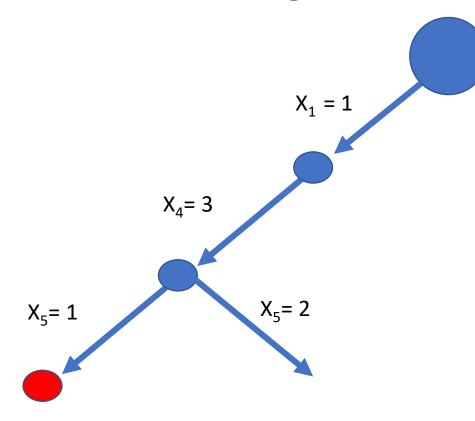
Backtracking search

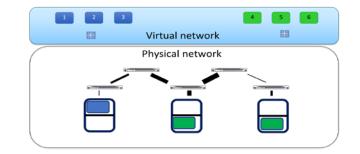


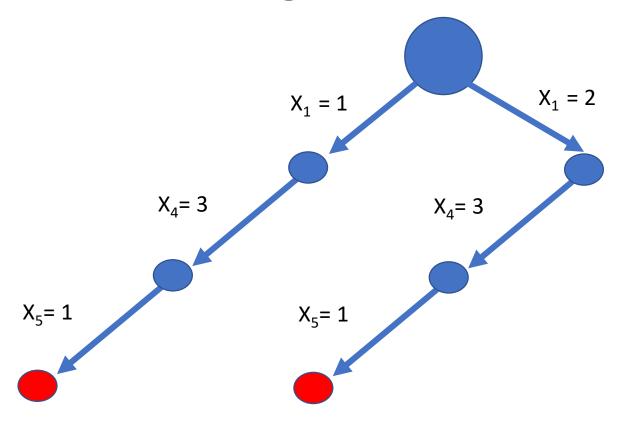


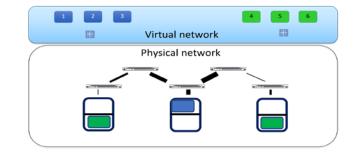


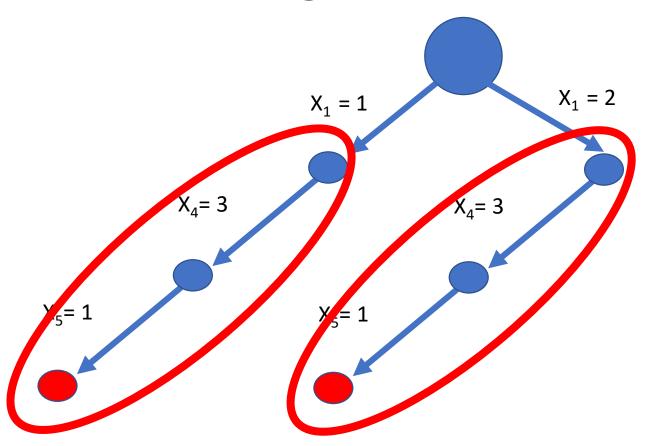


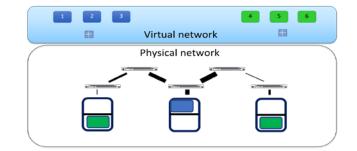


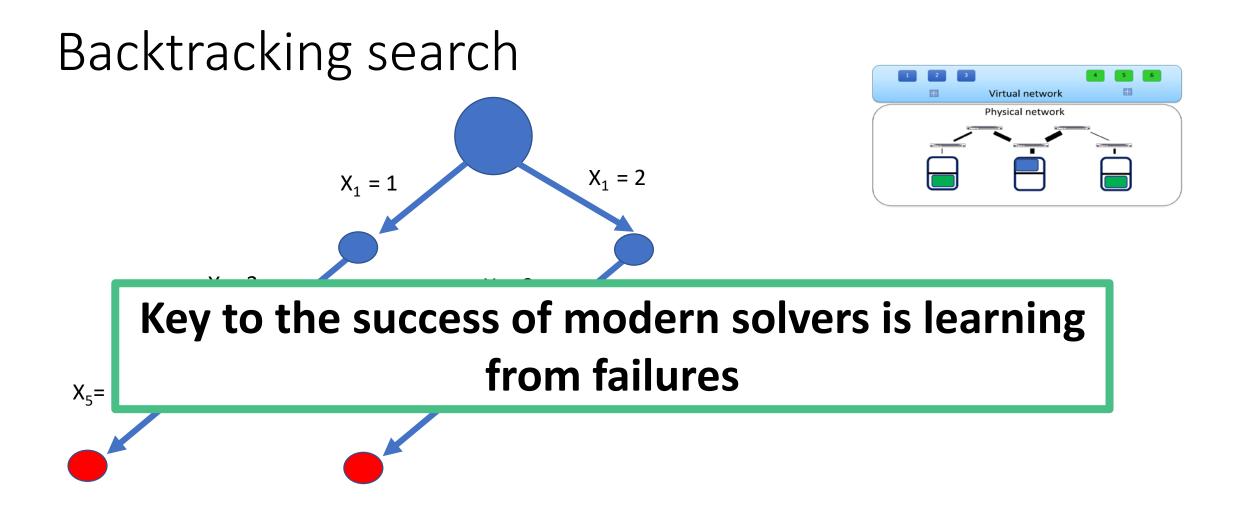


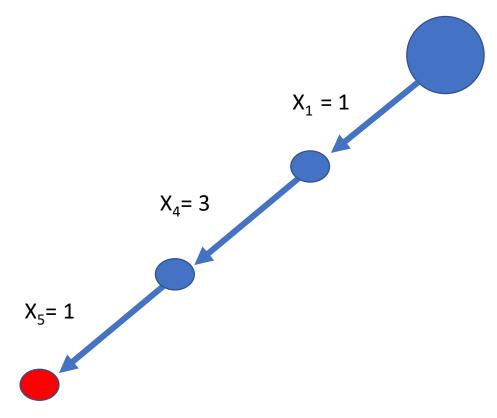


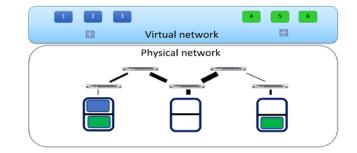


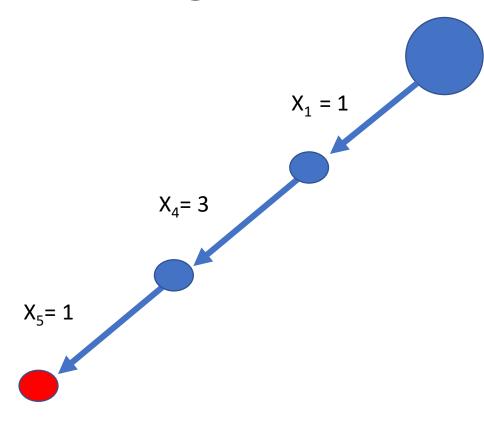


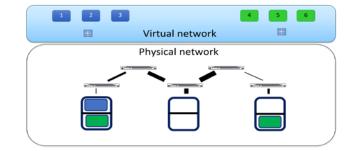




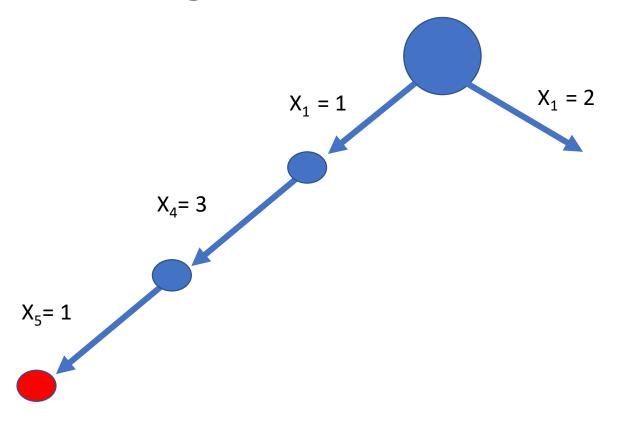


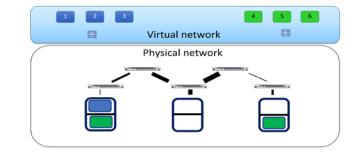




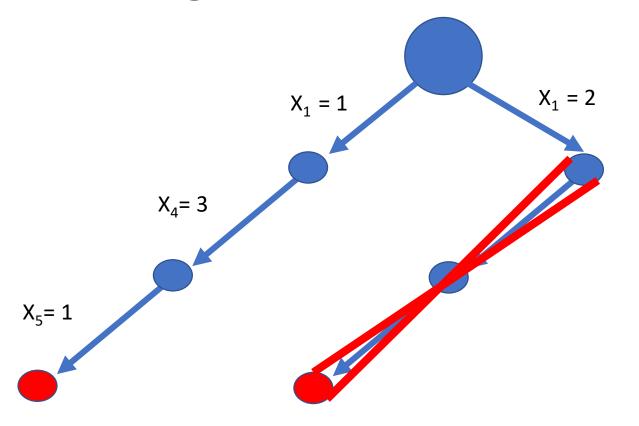


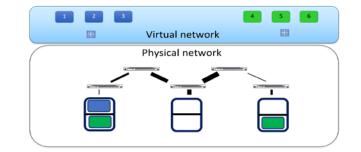
NOT $(X_4 = 3 \text{ AND } X_5 = 1)$



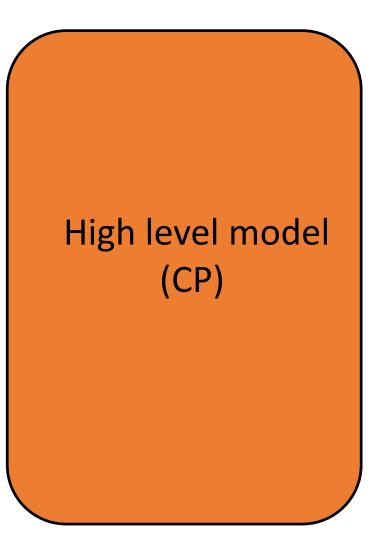


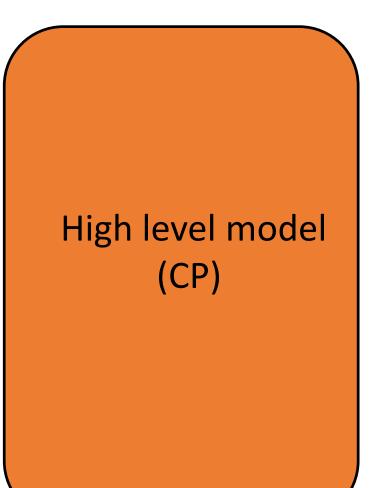
NOT ($X_4 = 3$ AND $X_5 = 1$)



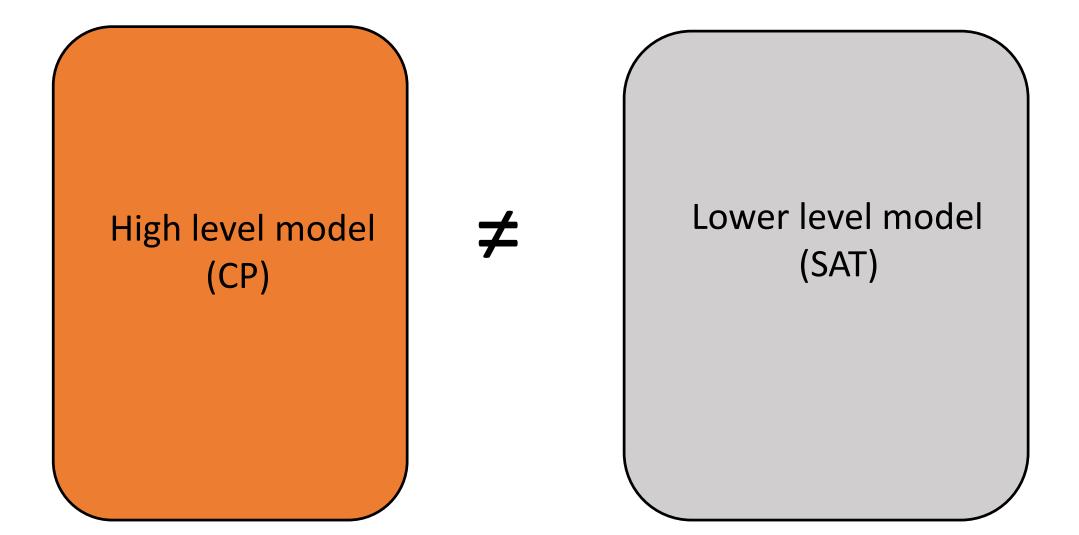


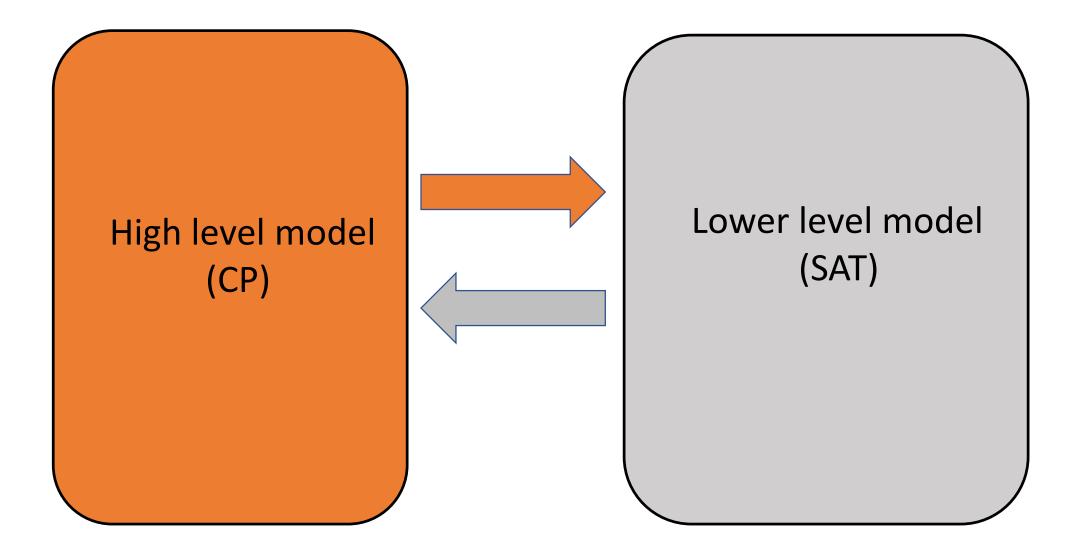
NOT $(X_4 = 3 \text{ AND } X_5 = 1)$



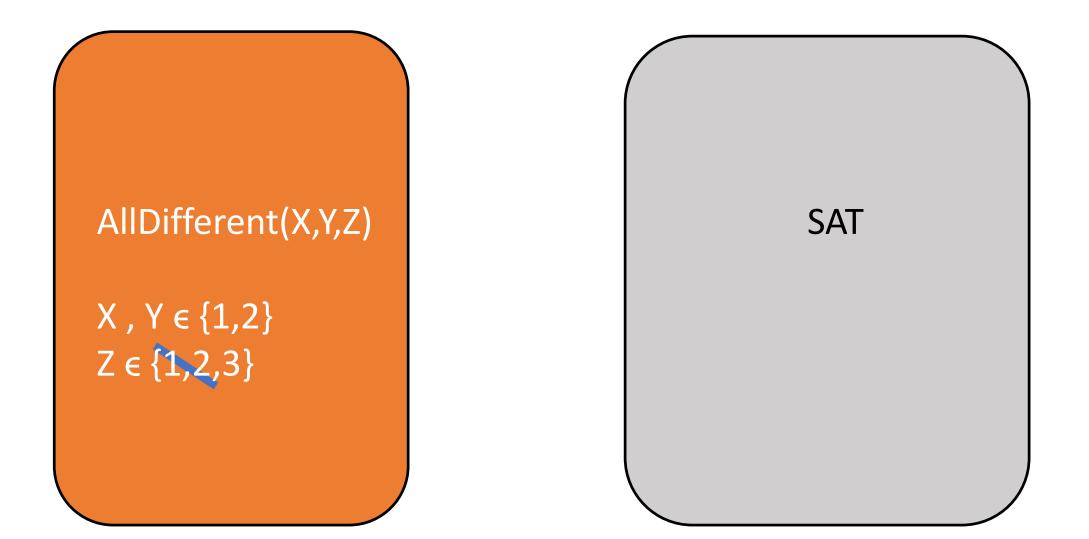


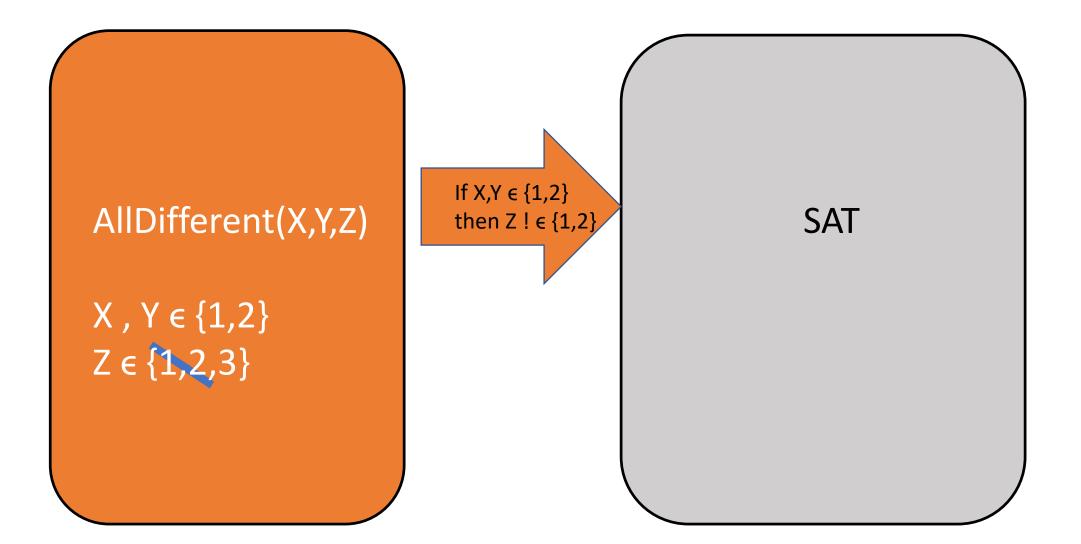
Lower level model (SAT)

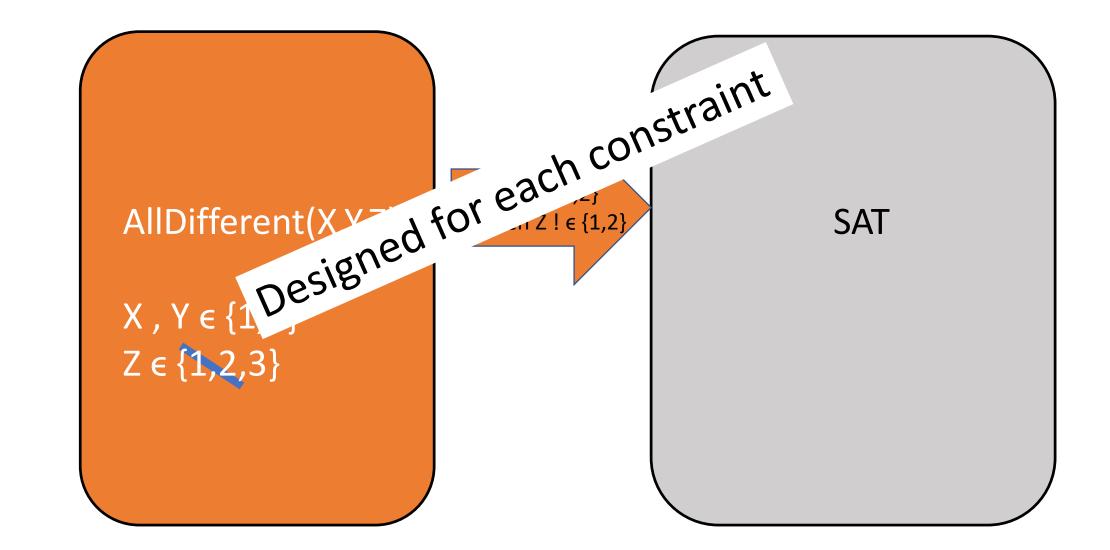


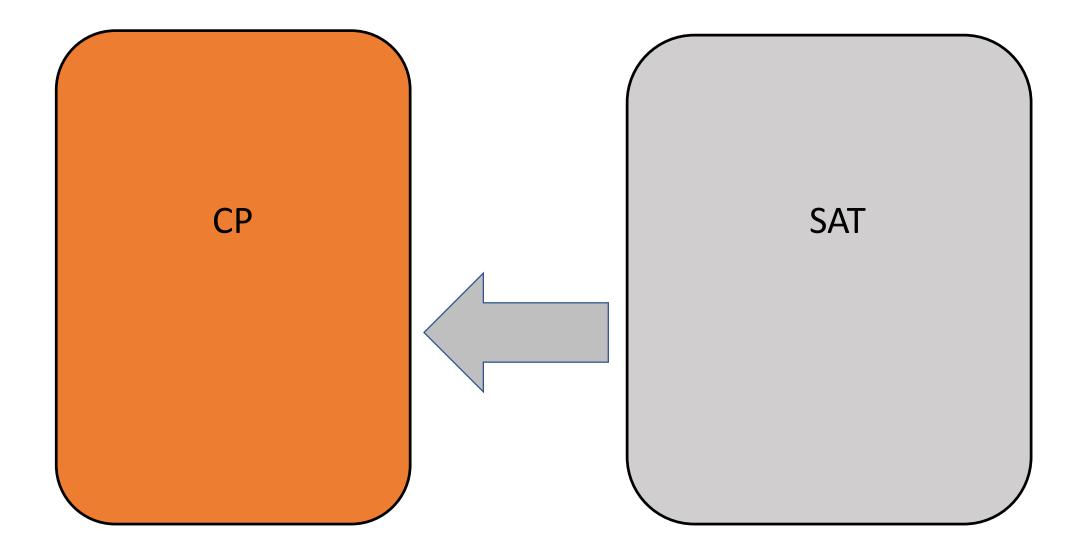


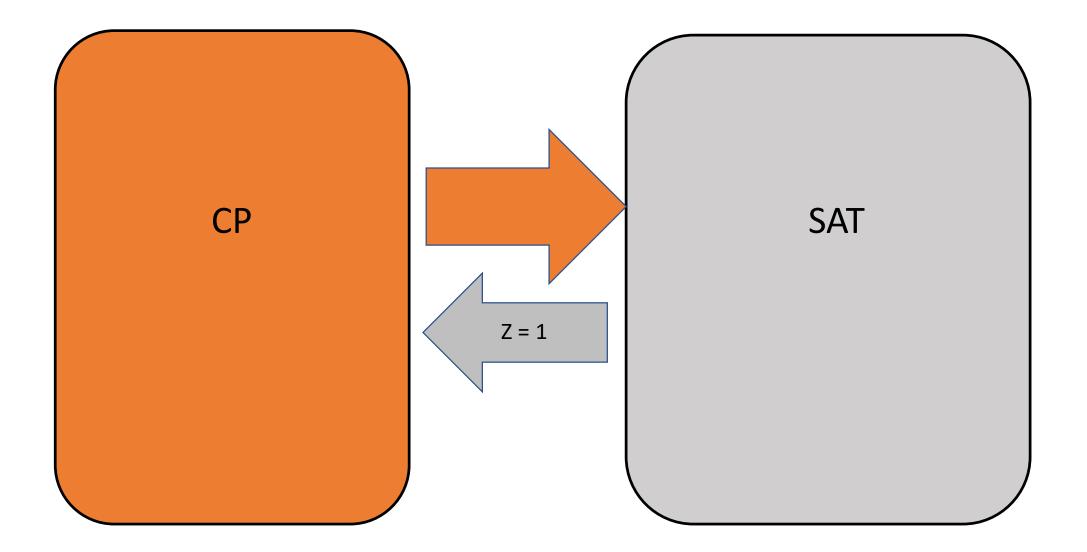


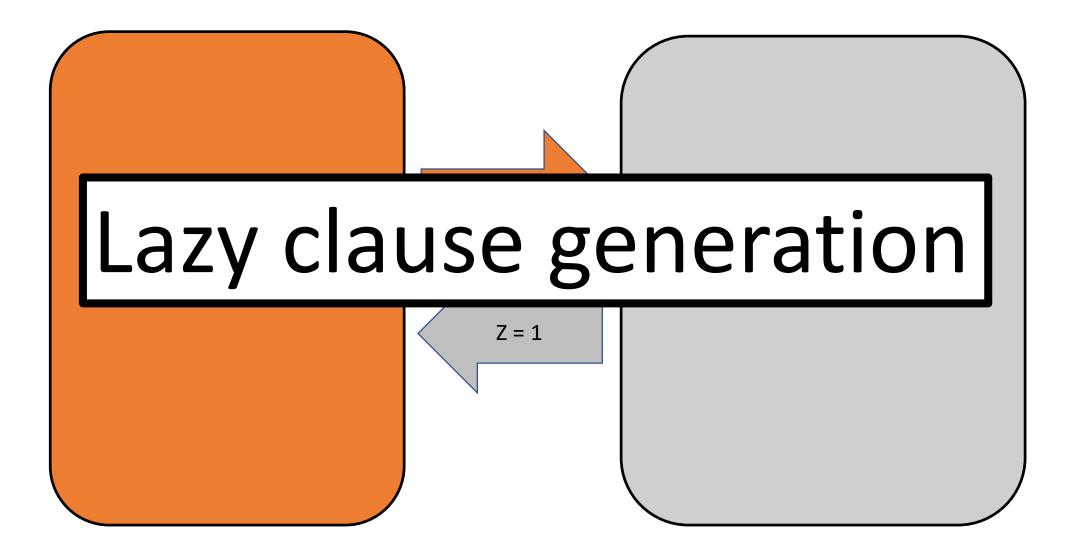














Simpler modeling language makes it easier to define an efficient learning scheme

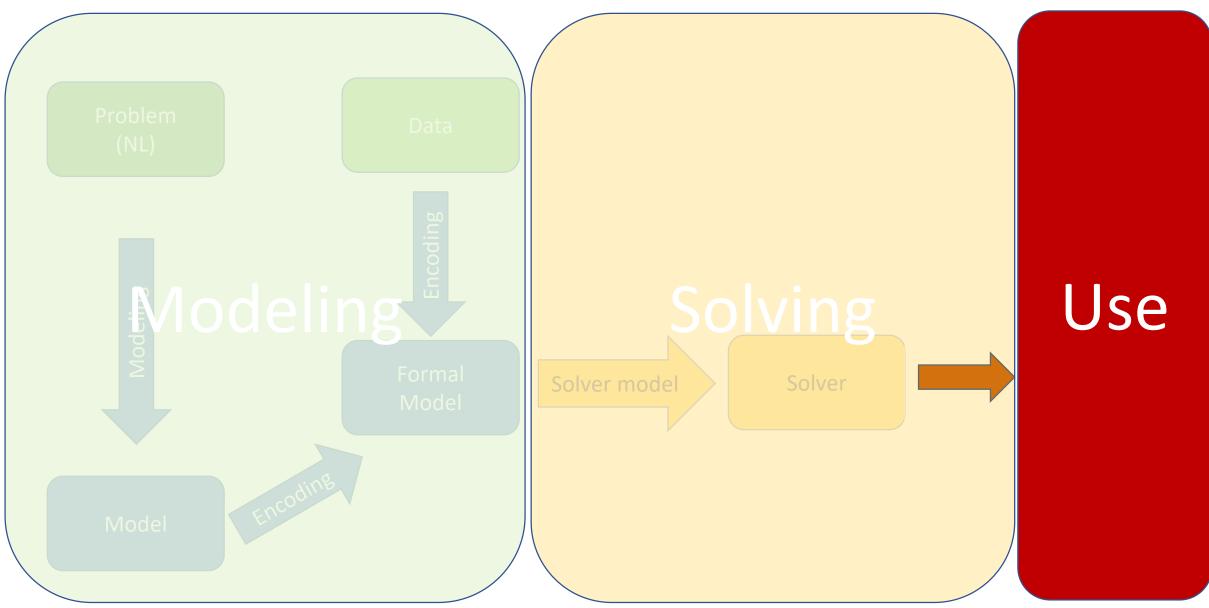
- SAT: learn clauses
- MIP: learn linear constraints
- CP: there is no mechanism to learn global constraints,
- CP/SAT hybrid solvers extract explanations from global constraints and learn clauses

Simpler modeling language makes it easier to define an efficient learning scheme

- SAT: learn clauses
- MIP: learn linear constraints
- CP: there is no mechanism to learn global constraints,
- CP/SAT hybrid solvers extract explanations from global constraints and learn clauses

Simpler modeling language makes it easier to define an efficient learning scheme

Overview



Use of the technology

- SAT and MIP are the fastest generic complete search solvers (used in industrial applications)
- Learning-based CP solvers are good alternatives if the problem has rich structure or the problem is tight.

What if it does not work

- Performance debugging is a challenge
- Design a simple greedy search
 - Greedy algorithm, LS algorithm are usually domain specific.
 - hint for powerful heuristics
 - Understand what are good heuristics for your problem
- Guide CP solver using the same heuristic
 - E.g. alter branching heuristics

- OR-Tools LCG (Google)
- Chuffed
- Choco

- OR-Tools LCG (Google)
- Chuff
- Choco

- Z3 (MSR)
- CVC4 (Stanford, lowa)

- OR-Tools LCG (Google)
- Chuff
- Choco

Z3 (MSR) • CVC4 (Stanford, lowa)

- **CPLEX** ${}^{\bullet}$
- gurobi \bullet
- SCIP
- **OR-Tools** LCG

- OR-Tools LCG (Google)
- Chuff
- Choco

Z3 (MSR) CVC4 (Stanford, Iowa)

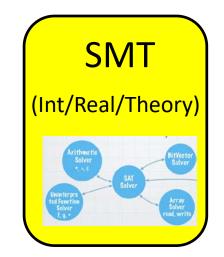
ullet

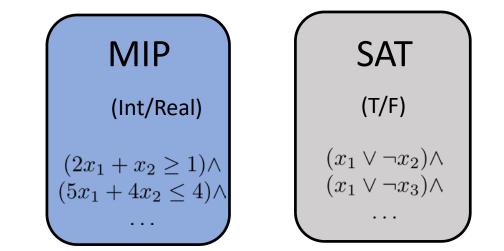
- CPLEX
- gurobi
- SCIP
- OR-Tools LCG

- Lingeling
- Glucose

Solver independent modeling

Solvers modeling language

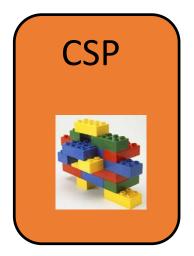


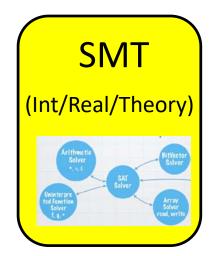


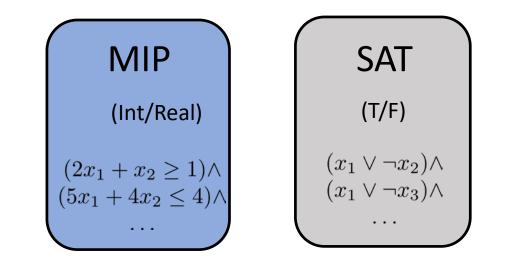
Solver independent modeling

Solvers modeling language

Minizinc







Solver independent modeling

- Great tool for problem specification
- Allows passing domain specific knowledge to the solver
- Do not mix different classes of variables, e.g. integer and set variables unless it is really necessary

Is it a magic tool?

No, for any solver, one can find a small problem on which it never terminates, e.g. a pigeon hole problem for SAT

Should I use them?

Yes, these are the best technologies out there.

An alternative would be to craft a new greedy searchbased solver for each small variation of the problem.

Thanks!