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Introduction
1. PhD, Optimization Research Group, NICTA, Australia

• Inference algorithms for global constraints (Toby Walsh)

2. Postdoc. Researcher, Univ. of Toronto and Carnegie Mellon Univ.
• Boolean optimization solver 

(Fahiem Bacchus@UofT, Ed Clarke@CMU) 

1. Researcher, Samsung Research America
• Machine learning for computer vision

2. Researcher, VMware  Research
• Applied optimization (for software verification)
• Interpretable ML



Outline
• Constraint satisfaction and optimization

• Problem modeling 
• Basic principles of constraint solving 
• Learning mechanisms
• Solvers landscape

• Solver independent modelling
• Advantages and disadvantages 



Constraint satisfaction
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Theory vs Practice

• Hard from theoretical point of view (NP-hard, P-Space)

• Efficiently solved in practice in many application domains

• Size of the problem is not a good measure of practical hardness



Theory vs Practice

• Small random problems can be very hard for SAT/BDD based 
techniques (< 100 variables)

• Very large industrial structured problems can be efficiently solved 
(> 100 000 variables)!



Schematic workflow 
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Bandwidth Allocation Problem (running example)

On the feasibility of automation for bandwidth allocation problems in data centers Y. Yuan, A. Wang, R. Alur, B. Thau Loo, FMCAD’2013
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Bandwidth Allocation Problem

Virtual network

Physical network

2 31 5 64
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Solvers modeling language 
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Solvers modeling language 

MIP
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(Int/Real/Theory)

Fast solvers for highly 
structured  problems
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Solvers modeling language 

MIP

Inference Search
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SAT solvers
Consists of a set of Boolean variables and clauses

FT T
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(1) each VM is mapped to a host server

Bandwidth Allocation Problem



(1) each VM is mapped to a host server

(3) capacity constraints on servers

Bandwidth Allocation Problem



SAT solvers
Complete search (CDCL search)

• finds a solution, otherwise
• guarantees that there are no solutions 

Incomplete search (local search)

• finds a solution, otherwise
• no guarantees that there are no solutions 



Problem modeling 

Solvers modeling language 

MIP

Inference Search

SATCSP
(T/F)(Int/Real)

SMT
(Int/Real/Theory)
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CSP solvers
Consists of a set of integer (or set) variables and constraints

Goal:  find an assignment that satisfies all constraints
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(1) each VM is mapped to a host server

Bandwidth Allocation Problem



(1) each VM is mapped to a host server

(3) capacity constraints on servers

Bandwidth Allocation Problem
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Which solver to use?

It depends!



Which solver to use?

Understand your problem (under-constrained, over-constrained)
• under-constrained are usually easy to solve by incomplete search
• over-constrained most likely have no solutions 
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Most likely it will be slow.
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Which solver to use?

• Start with CP model. Use the simplest model possible. 
Most likely it will be slow.

• Take advantage of the domain specific information
Remove model symmetry, problem decomposition, heuristics  

• Avoid using complicated variables, e.g. set variables
It is very hard to reason about them efficiently

• Relax constraints (e.g. use soft constraints instead of hard constraints)
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Backtracking search

X1  = 1

X4= 3

X5= 1

X1  = 2

X4= 3

X5= 1

Key to the success of modern solvers is learning  
from failures
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AllDifferent(X,Y,Z)

X , Y ϵ {1,2}
Z ϵ {1,2,3}

SAT
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CP solvers best learning model

SATAllDifferent(X,Y,Z)

X , Y ϵ {1,2}
Z ϵ {1,2,3}

If X,Y ϵ {1,2} 
then Z ! ϵ {1,2}
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SATCP



CP solvers best learning model

Z = 1

SATCP



CP solvers best learning model

Z = 1

SATCPLazy clause generation
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MIP SATCSP SMT

• SAT: learn clauses
• MIP: learn linear constraints
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Use of the technology

• SAT and MIP are the fastest generic complete search solvers 
(used in industrial applications)

• Learning-based CP solvers are good alternatives if the problem 
has rich structure or  the problem is tight.



What if it does not work 

• Performance debugging is a challenge
• Design a simple greedy search

• Greedy algorithm, LS algorithm are usually domain specific. 
• hint for powerful heuristics 

• Understand what are good heuristics for your problem

• Guide CP solver using the same heuristic
• E.g. alter branching heuristics 
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Solvers landscape

MIP SATCSP SMT

• OR-Tools LCG 
(Google)

• Chuff
• Choco  

• CPLEX
• gurobi
• SCIP
• OR-Tools 

LCG

• Lingeling
• Glucose

• Z3 (MSR)
• CVC4 

(Stanford, 
Iowa)
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Solver independent modeling

Solvers modeling language 

MIP SATCSP
(T/F)(Int/Real)

SMT
(Int/Real/Theory)

Minizinc



Solver independent modeling

• Great tool for problem specification 
• Allows passing  domain specific knowledge to the solver
• Do not mix different classes of variables, e.g. integer and set 

variables unless it is really necessary 



Is it a magic tool?

No, for any solver, one can find a small problem on 
which it never terminates,

e.g. a pigeon hole problem for SAT



Should I use them?

Yes, these are the best technologies out there.

An alternative would be to craft a new greedy search-
based solver for each small variation of the problem. 



Thanks!
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