
Deadlocking
QUIC Down Under

Maybe everything is totally independent

2

Stream X

Stream Y

But exploiting commonality is a good pattern

3

Concurrency is tempting but it leads to problems

4

Simple Problem

5

B A

App QUIC

A, B
STREAM 1:
 Data Sent = 10,
 MAX_STREAM_DATA = 10
STREAM 7: not created

STREAM 7 STREAM 1

Connection:
 Data Sent = 20,
 MAX_DATA = 20

No Flow
control credit

Can’t send A

QUIC

Can’t use B
(needs A)

Can’t give flow
control credit

B

Simple solution

6

Block or reject the write of B until A has flow control credit

This ISN’T guaranteeing that A is sent before B

Instead: B is only accepted if A is

No commitment to ordering of delivery

Not for the first send attempt

And especially not receipt at the peer

Intermediaries are awesome

A transport-layer intermediary that is ignorant of the
application protocol can create this problem

In the previous example, imagine that A and B arrive from
another QUIC peer rather than an application protocol

The intermediary doesn’t know that B depends on A

Clearly B can make progress, so it sends B

7

Options

1. Don’t do that

Get acknowledgment at the application layer

… before sending anything that is dependent on that data

2. Eat the memory cost

Give flow control credit even if you can’t use something

3. Time out, cancel, and retry

4. Something, something intermediary

8

Something, something intermediary

If you terminate the QUIC connection

… then you are responsible

If you declare that you support an ALPN token

... then you support the protocol it identifies

If “hq” compression uses unacknowledged dependencies

… then the entity terminating the connection copes

9

