
HEADER COMPRESSION
DESIGN TEAM

MIKE BISHOP

ALAN FRINDELL

BUCK KRASIC

ROBERTO PEON

MARTIN THOMSON

DMITRI TIKHONOV

LATENCY IS THE ENEMY
(AND POOR COMPRESSION IS LATENCY)

• Head-of-line blocking

• Reordering

• Particularly from loss, but also network and even internal

• Always impacts the current stream, can impact other streams

• Data loss

• Packet drops in combination with RST_STREAM (i.e. never retransmitted)

• Bandwidth limitations

• Fit more requests into allowed bytes

THE MISSION Serialized
HPACK

suffers from
head-of-line

blocking

Static
HPACK

suffers from
poor

compression
efficiency

THE MISSION Serialized
HPACK

suffers from
head-of-line

blocking

Static
HPACK

suffers from
poor

compression
efficiency

OPERATING
CONDITIONS

• Reordering is common

• Network reordering varies widely across networks

• Loss and retransmission is fundamentally a reordering event

• Multi-threaded implementations may induce reordering

internally

• Many connections experience no loss

• Not so many that we can discount this

• Not so few that we should penalize the majority for the

minority’s crummy link

• Request cancellations occur with some frequency

• Only ~0.8% of requests are reset (Facebook)

• ~51% of connections experience at least one reset

(Akamai)

HOW TO HANDLE REORDERING: BLOCKING

FULL ORDERING

• Risks false sharing in head-of-

line blocking

• Single packet lost from this

stream blocks headers on all

streams

• Worst possible HOLB rates

OPTIMISTIC

CONCURRENCY

• Assumes state has arrived

• Block only if necessary state

is missing

• Uses flow control to provide

back-pressure and control

memory consumption

• Risks deadlocks

NEVER RISK BLOCKING

• Robustness

• Avoids risks of deadlock,

memory consumption, etc.

• Efficiency suffers noticeably

• Must add headers to table

at least 1 RTT in advance of

using them, or else send

them multiple times during

first RTT of use

HOW TO DEADLOCK

• Interpretation of Stream B depends on

data from Stream A

• Flow control prevents data on Stream A

from being sent

• Lack of progress on Stream B prevents

new flow control credit from being

issued to Stream A

Permitted by FC

Buffered in transport

HOW TO NOT
DEADLOCK

• Problem: Can all application protocols avoid this all the time?

• Problem: Really hurts compression performance

Don’t Do That!

• Ensure Stream A makes progress with any new flow control credit
that becomes available

• Problem: Priorities are currently:

• Purely advisory => optional

• Internal to the transport implementation’s design

Prioritization Between Streams

• Flow control consumed on write completion, not on transmission

• Application responsible to make sure data written to A before
beginning write to B

• Problem: Application-level retransmits

Consume Flow Control Sooner

LIMITING MEMORY CONSUMPTION

• Discovering a blocking reference mid-

frame means you already have

uncompressed data in memory

• Suggestion: Don’t begin reading a

frame until you have all necessary state

to finish

• Uses flow control for back pressure

• Requires frame preface describing

encoder state

• Separate from blocking on missing dataProcessed

Waiting

Expanded Header Data

SIMULATOR RESULTS

• Allowing blocking means carefully

balancing ways to avoid deadlocks

• Noticeable compression gains early in

the connection

• No simulator yet for per-set blocking

• No data yet on exactly how this

translates to latency
0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
u
m

u
la

ti
ve

 C
o
m

p
re

ss
io

n
 R

at
io

Request Sequence

Initial Simulator Results

Per-Header Blocking No Blocking

SIMULATOR RESULTS: LONGER SESSION

HOW TO BUILD CONTROL STREAMS

MANY CONTROL

STREAMS

• Mitigates the impact of loss

between unrelated entries

• Requires transport features

to guarantee no deadlocks

SINGLE CONTROL

STREAM

• Simplifies deadlock avoidance

• Efficiency suffers in the

presence of loss

MINIMIZE THE CONTROL

STREAM

• Simplifies common case

• After aborted stream, re-

writes critical data on control

stream

HOW TO TRACK DATA

DATA PER HEADER

• Each header is individually

added, referenced, and

deleted

• DT has largely eliminated due

to memory/CPU overhead

CHECKPOINTS

• Groups of header entries

• Track which/how many

checkpoints reference entry

• When all referencing

checkpoints are gone, header

is removed

ROTATING WINDOW

• Headers added in sequence

(HPACK-style)

• When table size reaches limit,

old entries roll off

WHERE PROPOSALS LAND

Data per header Checkpoints Rotating window

Full ordering

HPACK



Optimistic

concurrency

Never blocking

WHERE PROPOSALS LAND

Data per header Checkpoints Rotating window

Full ordering

HPACK



Optimistic

concurrency

Never blocking

WHERE PROPOSALS LAND

Data per header Checkpoints Rotating window

Optimistic

concurrency

QPACK

Never blocking

QCRAM



WHERE PROPOSALS LAND

Data per header Checkpoints Rotating window

Optimistic

concurrency

QPACK QCRAM



Never blocking

QMIN



WHERE PROPOSALS LAND

Data per header Checkpoints Rotating window

Optimistic

concurrency

QPACK QCRAM



Never blocking

QMIN



WHERE PROPOSALS LAND

Checkpoints Rotating window

Optimistic

concurrency

QPACK QCRAM



Never blocking

QMIN



ACHILLES HEELS

HPACK 

• Requires full ordering

QCRAM 

• Risks deadlock without major changes to how
HTTP cancels requests

QMIN 

• Blocking avoidance reduces efficiency when it
matters most

QPACK

• Parallel control streams are complex, of
unproven usefulness

MOVING FORWARD

• Need more data to explore latency versus efficiency trade-off

• Simulation/implementation updates in progress

• Alan implementing QPACK-07

• Buck implementing QCRAM-03

• Input from working group: Rule anything else in/out?

• Blocking?

• Configurable pieces?

• Delayed reading from transport?

