
HEADER COMPRESSION
DESIGN TEAM

MIKE BISHOP

ALAN FRINDELL

BUCK KRASIC

ROBERTO PEON

MARTIN THOMSON

DMITRI TIKHONOV

LATENCY IS THE ENEMY
(AND POOR COMPRESSION IS LATENCY)

• Head-of-line blocking

• Reordering

• Particularly from loss, but also network and even internal

• Always impacts the current stream, can impact other streams

• Data loss

• Packet drops in combination with RST_STREAM (i.e. never retransmitted)

• Bandwidth limitations

• Fit more requests into allowed bytes

THE MISSION Serialized
HPACK

suffers from
head-of-line

blocking

Static
HPACK

suffers from
poor

compression
efficiency

THE MISSION Serialized
HPACK

suffers from
head-of-line

blocking

Static
HPACK

suffers from
poor

compression
efficiency

OPERATING
CONDITIONS

• Reordering is common

• Network reordering varies widely across networks

• Loss and retransmission is fundamentally a reordering event

• Multi-threaded implementations may induce reordering

internally

• Many connections experience no loss

• Not so many that we can discount this

• Not so few that we should penalize the majority for the

minority’s crummy link

• Request cancellations occur with some frequency

• Only ~0.8% of requests are reset (Facebook)

• ~51% of connections experience at least one reset

(Akamai)

HOW TO HANDLE REORDERING: BLOCKING

FULL ORDERING

• Risks false sharing in head-of-

line blocking

• Single packet lost from this

stream blocks headers on all

streams

• Worst possible HOLB rates

OPTIMISTIC

CONCURRENCY

• Assumes state has arrived

• Block only if necessary state

is missing

• Uses flow control to provide

back-pressure and control

memory consumption

• Risks deadlocks

NEVER RISK BLOCKING

• Robustness

• Avoids risks of deadlock,

memory consumption, etc.

• Efficiency suffers noticeably

• Must add headers to table

at least 1 RTT in advance of

using them, or else send

them multiple times during

first RTT of use

HOW TO DEADLOCK

• Interpretation of Stream B depends on

data from Stream A

• Flow control prevents data on Stream A

from being sent

• Lack of progress on Stream B prevents

new flow control credit from being

issued to Stream A

Permitted by FC

Buffered in transport

HOW TO NOT
DEADLOCK

• Problem: Can all application protocols avoid this all the time?

• Problem: Really hurts compression performance

Don’t Do That!

• Ensure Stream A makes progress with any new flow control credit
that becomes available

• Problem: Priorities are currently:

• Purely advisory => optional

• Internal to the transport implementation’s design

Prioritization Between Streams

• Flow control consumed on write completion, not on transmission

• Application responsible to make sure data written to A before
beginning write to B

• Problem: Application-level retransmits

Consume Flow Control Sooner

LIMITING MEMORY CONSUMPTION

• Discovering a blocking reference mid-

frame means you already have

uncompressed data in memory

• Suggestion: Don’t begin reading a

frame until you have all necessary state

to finish

• Uses flow control for back pressure

• Requires frame preface describing

encoder state

• Separate from blocking on missing dataProcessed

Waiting

Expanded Header Data

SIMULATOR RESULTS

• Allowing blocking means carefully

balancing ways to avoid deadlocks

• Noticeable compression gains early in

the connection

• No simulator yet for per-set blocking

• No data yet on exactly how this

translates to latency
0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
u
m

u
la

ti
ve

 C
o
m

p
re

ss
io

n
 R

at
io

Request Sequence

Initial Simulator Results

Per-Header Blocking No Blocking

SIMULATOR RESULTS: LONGER SESSION

HOW TO BUILD CONTROL STREAMS

MANY CONTROL

STREAMS

• Mitigates the impact of loss

between unrelated entries

• Requires transport features

to guarantee no deadlocks

SINGLE CONTROL

STREAM

• Simplifies deadlock avoidance

• Efficiency suffers in the

presence of loss

MINIMIZE THE CONTROL

STREAM

• Simplifies common case

• After aborted stream, re-

writes critical data on control

stream

HOW TO TRACK DATA

DATA PER HEADER

• Each header is individually

added, referenced, and

deleted

• DT has largely eliminated due

to memory/CPU overhead

CHECKPOINTS

• Groups of header entries

• Track which/how many

checkpoints reference entry

• When all referencing

checkpoints are gone, header

is removed

ROTATING WINDOW

• Headers added in sequence

(HPACK-style)

• When table size reaches limit,

old entries roll off

WHERE PROPOSALS LAND

Data per header Checkpoints Rotating window

Full ordering

HPACK

Optimistic

concurrency

Never blocking

WHERE PROPOSALS LAND

Data per header Checkpoints Rotating window

Full ordering

HPACK

Optimistic

concurrency

Never blocking

WHERE PROPOSALS LAND

Data per header Checkpoints Rotating window

Optimistic

concurrency

QPACK

Never blocking

QCRAM

WHERE PROPOSALS LAND

Data per header Checkpoints Rotating window

Optimistic

concurrency

QPACK QCRAM

Never blocking

QMIN

WHERE PROPOSALS LAND

Data per header Checkpoints Rotating window

Optimistic

concurrency

QPACK QCRAM

Never blocking

QMIN

WHERE PROPOSALS LAND

Checkpoints Rotating window

Optimistic

concurrency

QPACK QCRAM

Never blocking

QMIN

ACHILLES HEELS

HPACK

• Requires full ordering

QCRAM

• Risks deadlock without major changes to how
HTTP cancels requests

QMIN

• Blocking avoidance reduces efficiency when it
matters most

QPACK

• Parallel control streams are complex, of
unproven usefulness

MOVING FORWARD

• Need more data to explore latency versus efficiency trade-off

• Simulation/implementation updates in progress

• Alan implementing QPACK-07

• Buck implementing QCRAM-03

• Input from working group: Rule anything else in/out?

• Blocking?

• Configurable pieces?

• Delayed reading from transport?

