
QUIC handshake and
Connection ID

Status Quo (draft-08)

Client chooses Connection ID (CCID)

○ Initial, 0-RTT have CCID
○ Retry, Version Negotiation have CCID (for verification)

Server chooses Connection ID (SCID)

○ Client and Server Handshakes have Server-chosen Connection ID
(SCID)

○ All 1-RTT packets have SCID

Client must use 5-tuple to associate SCID with connection

2

Issues with Design

Server may want to redirect incoming connection to a
different server with Retry (Issue #713)

Simultaneous handshakes on a 5-tuple are impossible
without trial decryption (Issue #714)

This is the only time connection ID is changed unilaterally

3

https://github.com/quicwg/base-drafts/issues/713
https://github.com/quicwg/base-drafts/issues/714

Option 1: Transport Params
Server chosen connection ID goes in transport parameters

Pros:

● Part of the crypto handshake, so it can’t be tampered with
● No new frames allowed in the handshake
● Could allow arbitrary length connection IDs

Cons:

● Adds a transport parameter
● Requires exposing transport params before the completing the

handshake

PR#1041

4

https://github.com/quicwg/base-drafts/pull/1041

Option 2: TLS Extension
Server chosen connection ID goes in TLS extension

Pros:

● Part of the crypto handshake, so it can’t be tampered with
● No new frames allowed in the handshake
● Allow arbitrary length connection IDs

Cons:

● Requires a new TLS extension
● Requires exposing a new TLS extension
● QUIC will likely not allow asymmetric Connection IDs

draft-rescorla-tls-dtls-connection-id-02

5

https://tools.ietf.org/html/draft-rescorla-tls-dtls-connection-id-02

Option 3: NEW_CONNECTION_ID frame
Server chosen connection ID goes in NEW_CONNECTION_ID

Pros:

● All changes of connection ID start with NEW_CONNECTION_ID
○ But this is still different, because clients MUST change ID

Cons:

● Bundling a NEW_CONNECTION_ID frame with a crypto stream frame
is non-trivial.

● Another frame type is allowed in the handshake
● No protection from on-path elements tampering with the connection

ID (not sure why they would, but…)

6

Questions

1) Do we want to change connection ID explicitly?
2) Are any of these mechanisms right?

a) If not, what mechanism should be used?
3) Do we want variable length connection IDs?

a) Keep this in your mind for the next slides

7

QUIC Connection ID Size

Non-linkable Connection IDs
Goal: Given an existing connection, generate one or more
alternate connection IDs which route to the same server.

Challenge #1: They must not be linkable.

Challenge #2: 8-byte connection ID is a draft invariant.

9

Non-linkable Connection IDs
What can we do?

 Alternative #1: Server uses the load balancer as an oracle

 Alternative #2: Server and load balancer share algorithm

10

Non-linkable Connection IDs: 8 bytes
Solution #1: Explicit communication with load balancer

Cons:

● Synchronization may be hard
● Explicit communication is brittle
● Explicit communication may be impossible

Pros:

● Compact (compared to 16 bytes)

11

Non-linkable Connection IDs: 8 bytes
Solution #2: Shared Algorithm:Format preserving encryption

Cons:

● Can’t use simple AES-GCM
● Have to implement key rotation

Pros:

● Compact (compared to 16 bytes)

12

Non-linkable Connection IDs: 8 bytes
Solution #3: Shared Algorithm: Don’t change a few bits

Cons:

● The more bits that don’t change, the more linkable it is
● The fewer bits that don’t change, the more uneven the

flows are.
● Could allow machine ‘targeting’

Pros:

● Compact (compared to 16 bytes)
● Very easy to implement and fast

13

Non-linkable Connection IDs: 16 bytes
Solution #3: Shared Algorithm:Format preserving encryption

Cons:

● 8 bytes of extra overhead
● Have to Implement Key Rotation
● ‘Too much’ space - Could people do something bad?

Pros:

● Plenty of space for routing

14

Options

Option #1: Stick with 8 bytes and make it an invariant

Option #2: Stick with 8 bytes for v1 and allow for longer
connection IDs in the invariants

Option #3: Change to 16 byte connection IDs as an invariant

Option #4: Variable length Connection IDs

Once we have direction on these, we can discuss mechanism

15

