Manifest

draft-moran-suit-manifest-01
draft-moran-suit-architecture-01

SECURITY ARCHITECTURE

Firmware update over TLS

Developers put firmware image
on update server.

Devices fetch firmware from
that update server.

Each device trusts the update
Server.

The update server manages
access control.

— The developer logs in to the update
server and uploads a firmware.

— The update server decides whether
or not to accept the uploaded
firmware, based on the developer’s
permissions

Devices only need to trust one
set of credentials.

A lot of trust is placed
into the update server.

Firmware update with code signing

An author can sign the
firmware image before
it is distributed.

— The devices trust the
developer directly.

— The device verifies the
signature of the firmware
image before installing it.

— The risks posed by a firmware
repository are reduced.

— The author can perform
signing on a dedicated
devices, which further
reduces risk.

Devices are now
responsible for access
control.

Authors are now
responsible for security.

Devices must perform
public key operations
for each update.

Firmware update: transport security or
code signing?

e Code signing has significant benefits for security.

— Widely accepted practice in software, and device driver
distribution.

— Signed metadata takes this one step further, offering early
validation.

— Devices need to manage access control.
* Transport security offloads the burden of access
control.

— Devices aren’t required to handle access rights of
individual firmware authors.

— They place the burden of maintaining security on the
server.

Envisioned Relationships

* Prerequisite: Public key of
the firmware author is
stored on the device.

 Metadata is signed

 Metadata contains digest of
firmware

Device

Trusts

Public key of
the author

Metadata

Contains

Hash of the
firmware + URI

Points to

Firmware

Envisioned Architecture

Firmware Image Firmware Image
+ +
Manifest

Untrusted Manifest
Storage

End-to-End Security

ENCRYPTION

Fi

rmware update with per-device
encryption

The firmware author encrypts unique copy of
the firmware for every recipient device.

—T
—T
—T

ne firmware author builds a new firmware image
hey encrypt one copy of it for every device

ney upload all of these copies to a distribution

service

— Each device downloads its own firmware image
and decrypts it

Firmware update with single image
encryption

A single, encrypted firmware
image is distributed.

— Each device also receives a
copy of the image decryption
key, encrypted using its
unique encryption key.

— The device decrypts this with
its unique encryption key.

— The device uses the image
decryption key to decrypt the
image.

Optional feature; not needed in

all deployments

g

g -

g -

. Firmware

i Firmware Keys
—

10

TARGETING UPDATE

Targeting Update

 The operator can select a

group of devices.

— They can select devices by a
variety of parameters, such
as: Vendor & Model, Current
firmware version, ...

Instruct the system to
update some or all devices
automatically when the
vendor publishes new

firmware

The operator can select a
phased roll-out to minimize

risk.

Manifest includes various
attributes that allow update
to be tailored to specific
devices/device categories.

MANIFEST ENCODING

Manifest Encoding

* |nitially specified in ASN.1/DER. Used CMS-
based security wrappetr.
— Not well received based on mailing list feedback.

* Changed to CBOR/COSE. Described in CDDL.

* |s everyone happy now?

MANIFEST ATTRIBUTES

Manifest CDDL

Manifest = | :
Version number

of the manifest

manifestVersion : uint,€
text : {* int => tstr } / nil,

nonce : bstr,

timestamp : uint,

conditions: [* condition],

directives: [* directive] / nil,

aliases: [* ResourceReference] / nil,
dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

16

Manifest CDDL

Manifest = | Optional, textual
manifestVersion : uint, — description of the
text e—*—1AEt => tstr } / nil, Update.
nonce : bstr,
timestamp : uint,

conditions: [* condition],

directives: [* directive] / nil,
aliases: [* ResourceReference] / nil,
dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

17

Manifest CDDL

Random value to

Manifest = |
, , , ensure that a
manlifestVersion : uint, given manifest is
text unique.

nonc : str,
timestamp : uint,

conditions: [* condition],

directives: [* directive] / nil,
aliases: [* ResourceReference] / nil,
dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

18

Manifest CDDL

Manifest = |

manifestVersion : uilnt, Indicates when the
text : {* int => tstr } / nil, manifest was
nonce : bstr, created.
timestamp : uint, €

|t L Used for rollback
conditions: [* condition 1], sed for rollbac

. . . . protection.
directives: [* directive] / nil,
aliases: [* ResourceReference] / nil,
dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

19

Manifest CDDL

1. VendorID
2. ClassID
3. DeviceID
4. Best Before -
manifestVersion : uint,
text : {* int => tstr } / nil,

Used to construct
nnce : bstr, IF _ THEN
timgstamp : uint, z////Rums
conditions: [* condition]|,
directives: [* directive]| / nil,
alvases: [* ResourceReference] / nil,

ependencies: [* ResourceReference] / nil,
extensions: { * int => bstr } / nil,
1. Apply

, oadInfo: ? PayloadInfo
Immediately

2. Apply After

20

Manifest CDDL

Manifest = |
manifestVersion : uint,
text : {* int => tstr } / nil, Used to refer to
nonce : bstr, alternative locations
timestamp : uint, of the firmware

C image
conditions: [* con &

directives: directive] / nil,
aliases® [* ResourceReference] / nil,
dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

21

Manifest CDDL

Manifest = |
manifestVersion : uint,

text : {* int => tstr } / nil, To express the

requirement that
more than one
image has to be
installed on a device

nonce : bstr,

timestamp : uint,
conditions: [* conditio ,
directives: [* directive] / nil,

* sourceReference] / nil,

aliases: |
dependencies: [* ResourceReference] / nil,
extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

22

Payload CDDL

PayloadInfo = |
format = [€
type: 1int,
? parameters : bstr

1,
size: uilnt,
storageldentifier: bstr,
uris: [*]
rank: 1int,
uri: tstr
1] / nil,
digestAlgorithm = [
type : int,
? parameters: bstr
1 / nil,
digests = {* int => bstr} / nil,
payload = COSE Encrypt / bstr / nil

Format of the binary

23

Payload CDDL

PayloadInfo = |

format = |
type: 1int,
? parameters

1,

bstr

size: uint,€

storageldentifier:

uris: [*]
rank: 1int,
uri: tstr
11 / nil,
digestAlgorithm =
type : int,
? parameters:
1 / nil,

digests = {* int => bstr} / nil,
payload = COSE Encrypt / bstr / nil

bstr,

[

bstr

Size of the firmware
image in bytes

24

Payload CDDL

PayloadInfo = |
format = |
type: 1int,
? parameters : bstr Indicates where the
I image should be
size: uint, placed on the device

storageldentifier: bstr, €

uris: [*] Useful when device

contains multiple
MCUs and requires
multiple firmware
images.

rank: 1int,
uri: tstr
1] / nil,
digestAlgorithm = [
type : int,
? parameters: bstr
1 / nil,
digests = {* int => bstr} / nil,
payload = COSE Encrypt / bstr / nil

Payload CDDL

PayloadInfo = [
format = |
type: 1int,
? parameters : bstr

1,
size: uilnt,

storageldentifier: bstr,

uris: [*[<€
rank: 1int,
uri: tstr
1] / nil,
digestAlgorithm = [
type : int,
? parameters: bstr
1 / nil,
digests = {* int => bstr} / nil,
payload = COSE Encrypt / bstr / nil

A set of ranked

references for where
to find the payload.

26

Payload CDDL

PayloadInfo = |
format = |
type: int,
? parameters : bstr

1y

size: uint,
storageldentifier: bstr, s
uris: [*]

rank: int,

uri: tstr Fingerprint

11 / nil, computed over the

digestAlgorithm = [— firmware image
type : int, / using the indicated
? parameters: bstr - algorithm.

] / nil,

digests = {* int => bstr} / nil,_

payload = COSE Encrypt / bstr / nil

Payload CDDL

PayloadInfo = |
format = |
type: 1int,
? parameters : bstr

1,
size: uilnt,
storageldentifier: bstr,
uris: [*]

rank: 1int,

uri: tstr
1] / nil,
digestAlgorithm = [

type : int,

? parameters: bstr
1 / nil,

digests = {* int => bstr} / nil, .
d { } Attached firmware

ayload = COSE Encrypt / bstr / nil)
] pay - yP Image)8

