
Manifest

draft-moran-suit-manifest-01

draft-moran-suit-architecture-01

1

SECURITY ARCHITECTURE
Design Decision

2

Firmware update over TLS

• Developers put firmware image
on update server.

• Devices fetch firmware from
that update server.

• Each device trusts the update
server.

• The update server manages
access control.
– The developer logs in to the update

server and uploads a firmware.

– The update server decides whether
or not to accept the uploaded
firmware, based on the developer’s
permissions

• Devices only need to trust one
set of credentials.

• A lot of trust is placed
into the update server.

3

Firmware update with code signing

• An author can sign the
firmware image before
it is distributed.
– The devices trust the

developer directly.
– The device verifies the

signature of the firmware
image before installing it.

– The risks posed by a firmware
repository are reduced.

– The author can perform
signing on a dedicated
devices, which further
reduces risk.

• Devices are now
responsible for access
control.

• Authors are now
responsible for security.

• Devices must perform
public key operations
for each update.

4

Firmware update: transport security or
code signing?

• Code signing has significant benefits for security.
– Widely accepted practice in software, and device driver

distribution.
– Signed metadata takes this one step further, offering early

validation.
– Devices need to manage access control.

• Transport security offloads the burden of access
control.
– Devices aren’t required to handle access rights of

individual firmware authors.
– They place the burden of maintaining security on the

server.

5

Envisioned Relationships

• Prerequisite: Public key of
the firmware author is
stored on the device.

• Metadata is signed

• Metadata contains digest of
firmware

Device

Public key of
the author

Metadata

Hash of the
firmware + URI

Firmware

Trusts

Signs

Contains

Points to

6

Envisioned Architecture

Device Author

Firmware Image
+
ManifestUntrusted

Storage

Firmware Image
+
ManifestDevice

End-to-End Security

7

ENCRYPTION
Design Decision

8

Firmware update with per-device
encryption

• The firmware author encrypts unique copy of
the firmware for every recipient device.

– The firmware author builds a new firmware image

– They encrypt one copy of it for every device

– They upload all of these copies to a distribution
service

– Each device downloads its own firmware image
and decrypts it

9

Firmware update with single image
encryption

• A single, encrypted firmware
image is distributed.

– Each device also receives a
copy of the image decryption
key, encrypted using its
unique encryption key.

– The device decrypts this with
its unique encryption key.

– The device uses the image
decryption key to decrypt the
image.

• Optional feature; not needed in
all deployments

10

TARGETING UPDATE
Design Decision

11

Targeting Update

• The operator can select a
group of devices.
– They can select devices by a

variety of parameters, such
as: Vendor & Model, Current
firmware version, …

• Instruct the system to
update some or all devices
automatically when the
vendor publishes new
firmware

• The operator can select a
phased roll-out to minimize
risk.

• Manifest includes various
attributes that allow update
to be tailored to specific
devices/device categories.

12

MANIFEST ENCODING
Design Decision

13

Manifest Encoding

• Initially specified in ASN.1/DER. Used CMS-
based security wrapper.

– Not well received based on mailing list feedback.

• Changed to CBOR/COSE. Described in CDDL.

• Is everyone happy now?

14

MANIFEST ATTRIBUTES
Design Decision

15

Manifest CDDL

Manifest = [

manifestVersion : uint,

text : {* int => tstr } / nil,

nonce : bstr,

timestamp : uint,

conditions: [* condition],

directives: [* directive] / nil,

aliases: [* ResourceReference] / nil,

dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

]

Version number
of the manifest

16

Manifest CDDL

Manifest = [

manifestVersion : uint,

text : {* int => tstr } / nil,

nonce : bstr,

timestamp : uint,

conditions: [* condition],

directives: [* directive] / nil,

aliases: [* ResourceReference] / nil,

dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

]

Optional, textual
description of the
Update.

17

Manifest CDDL

Manifest = [

manifestVersion : uint,

text : {* int => tstr } / nil,

nonce : bstr,

timestamp : uint,

conditions: [* condition],

directives: [* directive] / nil,

aliases: [* ResourceReference] / nil,

dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

]

Random value to
ensure that a
given manifest is
unique.

18

Manifest CDDL

Manifest = [

manifestVersion : uint,

text : {* int => tstr } / nil,

nonce : bstr,

timestamp : uint,

conditions: [* condition],

directives: [* directive] / nil,

aliases: [* ResourceReference] / nil,

dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

]

Indicates when the
manifest was
created.

Used for rollback
protection.

19

Manifest CDDL

Manifest = [

manifestVersion : uint,

text : {* int => tstr } / nil,

nonce : bstr,

timestamp : uint,

conditions: [* condition],

directives: [* directive] / nil,

aliases: [* ResourceReference] / nil,

dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

]

Used to construct
IF … THEN …

Rules

1. Vendor ID
2. Class ID
3. Device ID
4. Best Before

1. Apply
Immediately

2. Apply After
20

Manifest CDDL

Manifest = [

manifestVersion : uint,

text : {* int => tstr } / nil,

nonce : bstr,

timestamp : uint,

conditions: [* condition],

directives: [* directive] / nil,

aliases: [* ResourceReference] / nil,

dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

]

Used to refer to
alternative locations
of the firmware
image

21

Manifest CDDL

Manifest = [

manifestVersion : uint,

text : {* int => tstr } / nil,

nonce : bstr,

timestamp : uint,

conditions: [* condition],

directives: [* directive] / nil,

aliases: [* ResourceReference] / nil,

dependencies: [* ResourceReference] / nil,

extensions: { * int => bstr } / nil,

payloadInfo: ? PayloadInfo

]

To express the
requirement that
more than one
image has to be
installed on a device

22

Payload CDDL
PayloadInfo = [

format = [

type: int,

? parameters : bstr

],

size: uint,

storageIdentifier: bstr,

uris: [*[

rank: int,

uri: tstr

]] / nil,

digestAlgorithm = [

type : int,

? parameters: bstr

] / nil,

digests = {* int => bstr} / nil,

payload = COSE_Encrypt / bstr / nil

]

Format of the binary

23

Payload CDDL
PayloadInfo = [

format = [

type: int,

? parameters : bstr

],

size: uint,

storageIdentifier: bstr,

uris: [*[

rank: int,

uri: tstr

]] / nil,

digestAlgorithm = [

type : int,

? parameters: bstr

] / nil,

digests = {* int => bstr} / nil,

payload = COSE_Encrypt / bstr / nil

]

Size of the firmware
image in bytes

24

Payload CDDL
PayloadInfo = [

format = [

type: int,

? parameters : bstr

],

size: uint,

storageIdentifier: bstr,

uris: [*[

rank: int,

uri: tstr

]] / nil,

digestAlgorithm = [

type : int,

? parameters: bstr

] / nil,

digests = {* int => bstr} / nil,

payload = COSE_Encrypt / bstr / nil

]

Indicates where the
image should be
placed on the device

Useful when device
contains multiple
MCUs and requires
multiple firmware
images.

25

Payload CDDL
PayloadInfo = [

format = [

type: int,

? parameters : bstr

],

size: uint,

storageIdentifier: bstr,

uris: [*[

rank: int,

uri: tstr

]] / nil,

digestAlgorithm = [

type : int,

? parameters: bstr

] / nil,

digests = {* int => bstr} / nil,

payload = COSE_Encrypt / bstr / nil

]

A set of ranked
references for where
to find the payload.

26

Payload CDDL
PayloadInfo = [

format = [

type: int,

? parameters : bstr

],

size: uint,

storageIdentifier: bstr, s

uris: [*[

rank: int,

uri: tstr

]] / nil,

digestAlgorithm = [

type : int,

? parameters: bstr

] / nil,

digests = {* int => bstr} / nil,

payload = COSE_Encrypt / bstr / nil

]

Fingerprint
computed over the
firmware image
using the indicated
algorithm.

27

Payload CDDL
PayloadInfo = [

format = [

type: int,

? parameters : bstr

],

size: uint,

storageIdentifier: bstr,

uris: [*[

rank: int,

uri: tstr

]] / nil,

digestAlgorithm = [

type : int,

? parameters: bstr

] / nil,

digests = {* int => bstr} / nil,

payload = COSE_Encrypt / bstr / nil

]

Attached firmware
image

28

