
A Broadcast-Only Communication Model

Christian Tschudin, University of Basel
March 24, 2019
ICNRG interim meeting, IETF Prague

Continuity (two postcards from the past)

from the panel at ACM ICN 2018

Continuity (two postcards from the past)
today’s talk

from the panel at ACM ICN 2018

In a nutshell: Push is for Gods, Pull is for Mortals
• “Global broadcast-only” induces “replicated append-only logs” 

(the first time we see a comm model induce a data structure)

In a nutshell: Push is for Gods, Pull is for Mortals
• “Global broadcast-only” induces “replicated append-only logs” 

(the first time we see a comm model induce a data structure)

• Broadcast-only is reality, just hides in plain sight: 
Secure Scuttlebutt, PKI, Google Cloud Pub/Sub, inside Facebook

In a nutshell: Push is for Gods, Pull is for Mortals
• “Global broadcast-only” induces “replicated append-only logs” 

(the first time we see a comm model induce a data structure)

• Broadcast-only is reality, just hides in plain sight: 
Secure Scuttlebutt, PKI, Google Cloud Pub/Sub, inside Facebook

• Is full global broadcast-only possible? No, but: 
- model explains current ICN pain points well 
- guidance for “True ICN": say goodbye to the link+”arbigram” model

In a nutshell: Push is for Gods, Pull is for Mortals
• “Global broadcast-only” induces “replicated append-only logs” 

(the first time we see a comm model induce a data structure)

• Broadcast-only is reality, just hides in plain sight: 
Secure Scuttlebutt, PKI, Google Cloud Pub/Sub, inside Facebook

• Is full global broadcast-only possible? No, but: 
- model explains current ICN pain points well 
- guidance for “True ICN": say goodbye to the link+”arbigram” model

• Corollary for an ICN protocol stack waist: 
- embrace streams (solitary waves) instead of flow-balance 
- not worth fixing “faux ICN”, rather buy stocks in multicast companies

 ICN network

Recently, in an ICN project…
Config: streaming data is archived
during recording, permits time
shifting apps, also direct streaming.

repo for /path/to/data producer of /path/to/data

 ICN network

Recently, in an ICN project…
Config: streaming data is archived
during recording, permits time
shifting apps, also direct streaming.

• Mechanics: data producer AND
repo register for the same name

repo for /path/to/data producer of /path/to/data

 ICN network

Recently, in an ICN project…
Config: streaming data is archived
during recording, permits time
shifting apps, also direct streaming.

• Mechanics: data producer AND
repo register for the same name

repo for /path/to/data producer of /path/to/data

archiving (pull)

 ICN network

Recently, in an ICN project…
Config: streaming data is archived
during recording, permits time
shifting apps, also direct streaming.

• Mechanics: data producer AND
repo register for the same name

repo for /path/to/data producer of /path/to/data

archiving (pull)

consumer of /path/to/data

pull

 ICN network

Recently, in an ICN project…
Config: streaming data is archived
during recording, permits time
shifting apps, also direct streaming.

• Mechanics: data producer AND
repo register for the same name

repo for /path/to/data producer of /path/to/data

archiving (pull)

?

consumer of /path/to/data

pull

 ICN network

Recently, in an ICN project…
Config: streaming data is archived
during recording, permits time
shifting apps, also direct streaming.

• Mechanics: data producer AND
repo register for the same name

• If repo delivery path has
systematic lag, direct producer-
consumer path is preferred

repo for /path/to/data producer of /path/to/data

archiving (pull)

?

consumer of /path/to/data

pull

 ICN network

Recently, in an ICN project…
Config: streaming data is archived
during recording, permits time
shifting apps, also direct streaming.

• Mechanics: data producer AND
repo register for the same name

• If repo delivery path has
systematic lag, direct producer-
consumer path is preferred

• E.g. How can the network know
when the producer stops (and only
archived content is available)?

repo for /path/to/data producer of /path/to/data

archiving (pull)

?

consumer of /path/to/data

pull

 ICN network

Recently, in an ICN project…
Config: streaming data is archived
during recording, permits time
shifting apps, also direct streaming.

• Mechanics: data producer AND
repo register for the same name

• If repo delivery path has
systematic lag, direct producer-
consumer path is preferred

• E.g. How can the network know
when the producer stops (and only
archived content is available)?

Enters: Push. In a (repo AND prod)
broadcast model, not an issue at all.

repo for /path/to/data producer of /path/to/data

archiving (pull)

?

consumer of /path/to/data

pull

“With Push, not an issue, at all.”
In this talk: PUSH = full global broadcast = full content replication

“With Push, not an issue, at all.”
In this talk: PUSH = full global broadcast = full content replication
 
- no routing needed 
- no mobile producer problem 
- no requests needed 
- no destination or requestor addresses 
- no requestor state 
- no timeouts, no polling for notifications 
 
works bidirectionally and equally well for 1:N and N:M

“With Push, not an issue, at all.”
In this talk: PUSH = full global broadcast = full content replication
 
- no routing needed 
- no mobile producer problem 
- no requests needed 
- no destination or requestor addresses 
- no requestor state 
- no timeouts, no polling for notifications 
 
works bidirectionally and equally well for 1:N and N:M

What has “full global broadcast” 
in common with “full content replication”?

?

app-to-log, log-to-log, log-to-app
New style: decentralized apps! Two slides from September 2018 (ACM ICN’2018 panel):

app

 Alice’s log

wr()

 Bob’s log replica

rd()

app-to-log, log-to-log, log-to-app
New style: decentralized apps! Two slides from September 2018 (ACM ICN’2018 panel):

app

 Alice’s log

wr()

 Bob’s log replica

rd()

app

 Alice’s log replica

 Bob’s log

wr() rd()

app-to-log, log-to-log, log-to-app
New style: decentralized apps! Two slides from September 2018 (ACM ICN’2018 panel):

app

 Alice’s log

wr()

 Bob’s log replica

rd()

app

 Alice’s log replica

 Bob’s log

wr() rd()

incremental, mutual log replication

app-to-log, log-to-log, log-to-app
New style: decentralized apps! Two slides from September 2018 (ACM ICN’2018 panel):

• In such a peer-to-peer setting, it’s all about log replication: 
no push() or pull() question — “anything goes”

app

 Alice’s log

wr()

 Bob’s log replica

rd()

app

 Alice’s log replica

 Bob’s log

wr() rd()

incremental, mutual log replication

app-to-log, log-to-log, log-to-app
New style: decentralized apps! Two slides from September 2018 (ACM ICN’2018 panel):

• In such a peer-to-peer setting, it’s all about log replication: 
no push() or pull() question — “anything goes”

• The append-only logs make “set-difference” trivial — much much better than the “bag”

app

 Alice’s log

wr()

 Bob’s log replica

rd()

app

 Alice’s log replica

 Bob’s log

wr() rd()

incremental, mutual log replication

app-to-log, log-to-log, log-to-app
New style: decentralized apps! Two slides from September 2018 (ACM ICN’2018 panel):

• In such a peer-to-peer setting, it’s all about log replication: 
no push() or pull() question — “anything goes”

• The append-only logs make “set-difference” trivial — much much better than the “bag”

app

 Alice’s log

wr()

 Bob’s log replica

rd()

app

 Alice’s log replica

 Bob’s log

wr() rd()

incremental, mutual log replication

To me, 6 months later, 

PUSH is the solution, PULL is the problem

Replicated Logs and “Subjective Readers"
Secure Scuttlebutt: Ground truth are the 
individual append-only logs

• hash-chained signed messages

• replication via peer-to-peer fabric

Alice

Carol

Bob

Bob

Bob
Carol

Alice
Carol

Alicep2p

Replicated Logs and “Subjective Readers"
Secure Scuttlebutt: Ground truth are the 
individual append-only logs

• hash-chained signed messages

• replication via peer-to-peer fabric

• “subjective reader”: locally reconstruct 
 ADT (e.g. chat dialogue) from stitching together 
 entries from each participant’s log

Alice

Carol

Bob

Bob

Bob
Carol

Alice
Carol

Alicep2p

Replicated Logs and “Subjective Readers"
Secure Scuttlebutt: Ground truth are the 
individual append-only logs

• hash-chained signed messages

• replication via peer-to-peer fabric

• “subjective reader”: locally reconstruct 
 ADT (e.g. chat dialogue) from stitching together 
 entries from each participant’s log

• In SSB, distributed app = locally (!) 
- write to your own log 
- read from all relevant peers’ logs

Alice

Carol

Bob

Bob

Bob
Carol

Alice
Carol

Alicep2p

Comm: from analog perturbation..
Solitary waves (solitons) as an ideal communication model for ICN 
 
 
 
 
 
 

• Producer initiates perturbation wave

• solitary wave: no trace after passage / infinite omnidirect. propagation

• passive Observers, at arbitrary places

Service: reliable (exactly-once), ordered event delivery for all observers

.. to a global broadcast abstraction
Concatenate local 
broadcast domains, to 
form a global service

• place repeaters 
(observers that act as 
producers) where needed

• simply re-flood

• normal case: observers see the same perturbation multiple times 

Approach: only forward first perturbance —> synching on the frontier

• requires a way to identify source and perturbation —> src id + event reference

Universal Soliton Repeater
incoming 
packet <src,ref,val>

src1 .. srcN

newest

per source logs

*

*) under some symmetry assumption

Universal Soliton Repeater
incoming 
packet <src,ref,val>

src1 .. srcN

newest

per source logs

*

*) under some symmetry assumption

“comm model induces data struct"
Handling all nastiness of asynchronous communication forces log keeping:

• arbitrary multi-path - only propagate first perturbation

• arbitrary delays - duplicate detection requires full log

• arbitrary loss patterns - must be able to replay any log position

Good news: we get really nice properties for building distributed apps
• strict progress (information wavefront), efficiency: 

once replicated, content is never requested again

• <src,ref> (DONA!) plus next_ref() ideal for causal ordering of events 

(DAG and tangle data structures, log as a blockchain)

Global PUSH exists, today !
Pointing out three systems: 
- Secure Scuttlebutt (see decent. app example before, ICNRG interim in Boston) 
- PKI (next slide) 
- Google Cloud Pub/Sub (next slide) 

Yet another radar beep: 
- Facebook uses log replication, must “sync” the frontier 
 (do a ducksearch for “homomorphic hashing”) 

Have a second look at TCP: 
- TCP replicates two byte streams=logs (but only keeps a clipped log, 
 has no crypto-assurance about segment names, and is unicast)

PKI… and log replication
• PKI = X.509 web certificates, certificate forest, roots at certificate authorities - 

the trust backbone of the Web (TLS)
• Some CAs caught in foul play, or were hacked: cert mis-issuance 

 —> “Certificate Transparency” (CT), RCF 6962, June 2013

• CT implemented by collecting all certs, see e.g. https://crt.sh/, and 
https://www.certificate-transparency.org/

https://crt.sh/
https://www.certificate-transparency.org/

PKI… and log replication
• PKI = X.509 web certificates, certificate forest, roots at certificate authorities - 

the trust backbone of the Web (TLS)
• Some CAs caught in foul play, or were hacked: cert mis-issuance 

 —> “Certificate Transparency” (CT), RCF 6962, June 2013

• CT implemented by collecting all certs, see e.g. https://crt.sh/, and 
https://www.certificate-transparency.org/

• Instead of central database: 
- fully replicated append-only log  
- gossip-style replication (possible because of monotonic growth) 
- computing trust out of the log, in a trustless way … like SSB, only single app

https://crt.sh/
https://www.certificate-transparency.org/

PKI… and log replication
• PKI = X.509 web certificates, certificate forest, roots at certificate authorities - 

the trust backbone of the Web (TLS)
• Some CAs caught in foul play, or were hacked: cert mis-issuance 

 —> “Certificate Transparency” (CT), RCF 6962, June 2013

• CT implemented by collecting all certs, see e.g. https://crt.sh/, and 
https://www.certificate-transparency.org/

• Instead of central database: 
- fully replicated append-only log  
- gossip-style replication (possible because of monotonic growth) 
- computing trust out of the log, in a trustless way … like SSB, only single app

• Gasser et al: In Log We Trust: Revealing Poor Security Practices with Certificate
Transparency Logs and Internet Measurements, PAM 2018 conference

https://crt.sh/
https://www.certificate-transparency.org/

Google Cloud Pub/Sub____
Pub/Sub = event notification bus to coordinate distributed apps

• Google’s global service: “a secure, durable, highly available and scalable many-
to-many messaging system”

• durable means: delivery guarantee even if all Google servers crash at the
same time, hence Google must store an event until all consumers fetched it.

• Crash-resistant storage solutions (e.g. RAFT protocol, WAL) … use logs 

—> ICN services today are relying on logs, but not exposing them to the app
layer

Assessment
Pull-based ICN (e.g. NDN) an awkward "slicing" through the trade-off space:

• notification not available (“long-lasting interest” hack -> invitation to push)

• sending data only possible via interest-abuse: stuff data into interest, 
or put cmd in interest to let “repo” call you back

• it’s called “receiver-driven”, but repo cannot protect against interest flood 
in other words: prefix registration is another “long-lasting interest” hack

Assessment
Pull-based ICN (e.g. NDN) an awkward "slicing" through the trade-off space:

• notification not available (“long-lasting interest” hack -> invitation to push)

• sending data only possible via interest-abuse: stuff data into interest, 
or put cmd in interest to let “repo” call you back

• it’s called “receiver-driven”, but repo cannot protect against interest flood 
in other words: prefix registration is another “long-lasting interest” hack

But can we do the tradeoffs in a different way, have real global brcast?

Chances of getting Broadcast-only
• LAN looks good: (re-) flooding is feasible, first steps have been explored e.g. 

McCauley et al: The Deforestation of L2, SIGCOMM 2016

Observation: network has one knob - rate. Delay a producer at will, without breaking
contract.

Long distance brings bottlenecks, needs content selection -> set some producers to rate 0.
How to select? —> via subscription, this requires a reverse channel:

• instead of repeated interests: 
receiver also acts as producer, puts “I need replica of producer X” in its log once, is
replicated via broadcast (and consulted by the network), request is valid until revoked.

• More areas to explore: multicast, …

Summary: Push is for Gods, Pull is for Mortals

• “Global broadcast-only” induces “replicated append-only logs”

Summary: Push is for Gods, Pull is for Mortals

• “Global broadcast-only” induces “replicated append-only logs”

• Say NO to “arbigrams”. Better use replicate logs, DONA names <src,ref>

Summary: Push is for Gods, Pull is for Mortals

• “Global broadcast-only” induces “replicated append-only logs”

• Say NO to “arbigrams”. Better use replicate logs, DONA names <src,ref>

• Broadcast-only is reality 
Secure Scuttlebutt, PKI, Google Pub/Sub, inside Facebook

Summary: Push is for Gods, Pull is for Mortals

• “Global broadcast-only” induces “replicated append-only logs”

• Say NO to “arbigrams”. Better use replicate logs, DONA names <src,ref>

• Broadcast-only is reality 
Secure Scuttlebutt, PKI, Google Pub/Sub, inside Facebook

• Embrace streams (soliton waves) and multicast, instead of flow-balance

Summary: Push is for Gods, Pull is for Mortals

• “Global broadcast-only” induces “replicated append-only logs”

• Say NO to “arbigrams”. Better use replicate logs, DONA names <src,ref>

• Broadcast-only is reality 
Secure Scuttlebutt, PKI, Google Pub/Sub, inside Facebook

• Embrace streams (soliton waves) and multicast, instead of flow-balance

• Look into “batch-oriented” high-perf-networks, beyond TCP 
(lightpath switched networks, “truck full of SSD drives”)

