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(the first time we see a comm model induce a data structure)

• Broadcast-only is reality, just hides in plain sight: 
Secure Scuttlebutt, PKI, Google Cloud Pub/Sub, inside Facebook

• Is full global broadcast-only possible? No, but: 
- model explains current ICN pain points well 
- guidance for “True ICN": say goodbye to the link+”arbigram” model

• Corollary for an ICN protocol stack waist: 
- embrace streams (solitary waves) instead of flow-balance 
- not worth fixing “faux ICN”, rather buy stocks in multicast companies
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Recently, in an ICN project…
Config: streaming data is archived 
during recording, permits time 
shifting apps, also direct streaming.

• Mechanics: data producer AND 
repo register for the same name

• If repo delivery path has 
systematic lag, direct producer-
consumer path is preferred

• E.g. How can the network know 
when the producer stops (and only 
archived content is available)?

Enters: Push. In a (repo AND prod) 
broadcast model, not an issue at all.

repo for /path/to/data producer of /path/to/data

archiving (pull)

?

consumer of /path/to/data

pull
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In this talk: PUSH = full global broadcast = full content replication
 
- no routing needed 
- no mobile producer problem 
- no requests needed 
- no destination or requestor addresses 
- no requestor state 
- no timeouts, no polling for notifications 
 
works bidirectionally and equally well for 1:N and N:M

What has “full global broadcast” 
in common with “full content replication”?

?
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New style: decentralized apps!      Two slides from September 2018 (ACM ICN’2018 panel):

• In such a peer-to-peer setting, it’s all about log replication: 
no  push()  or pull() question — “anything goes”

• The append-only logs make “set-difference” trivial — much much better than the “bag”

app

 Alice’s log

wr()

 Bob’s log replica

rd()

app

 Alice’s log replica

 Bob’s log

wr() rd()

incremental, mutual log replication

To me, 6 months later, 

PUSH is the solution, PULL is the problem
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Replicated Logs and “Subjective Readers"
Secure Scuttlebutt: Ground truth are the 
individual append-only logs 

• hash-chained signed messages

• replication via peer-to-peer fabric 

• “subjective reader”: locally reconstruct 
     ADT (e.g. chat dialogue) from stitching together 
     entries from each participant’s log

• In SSB, distributed app = locally (!) 
- write to your own log 
- read from all relevant peers’ logs
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Comm: from analog perturbation..
Solitary waves (solitons) as an ideal communication model for ICN 
 
 
 
 
 
 

• Producer initiates perturbation wave

• solitary wave: no trace after passage / infinite omnidirect. propagation

• passive Observers, at arbitrary places


Service: reliable (exactly-once), ordered event delivery for all observers



.. to a global broadcast abstraction
Concatenate local 
broadcast domains, to 
form a global service


• place repeaters 
(observers that act as 
producers) where needed


• simply re-flood

• normal case: observers see the same perturbation multiple times 

Approach: only forward first perturbance —> synching on the frontier

• requires a way to identify source and perturbation —> src id + event reference
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“comm model induces data struct"
Handling all nastiness of asynchronous communication forces log keeping:

• arbitrary multi-path - only propagate first perturbation


• arbitrary delays - duplicate detection requires full log


• arbitrary loss patterns - must be able to replay any log position


Good news:  we get really nice properties for building distributed apps 
• strict progress (information wavefront), efficiency: 

once replicated, content is never requested again

• <src,ref>  (DONA!) plus  next_ref()  ideal for causal ordering of events 

(DAG and tangle data structures, log as a blockchain)



Global PUSH exists, today !
Pointing out three systems: 
- Secure Scuttlebutt (see decent. app example before, ICNRG interim in Boston) 
- PKI (next slide) 
- Google Cloud Pub/Sub (next slide) 

Yet another radar beep: 
- Facebook uses log replication, must “sync” the frontier 
  (do a ducksearch for “homomorphic hashing”) 

Have a second look at TCP: 
- TCP replicates two byte streams=logs (but only keeps a clipped log, 
   has no crypto-assurance about segment names, and is unicast)



PKI… and log replication
• PKI = X.509 web certificates, certificate forest, roots at certificate authorities - 

the trust backbone of the Web (TLS)
• Some CAs caught in foul play, or were hacked: cert mis-issuance 

                           —> “Certificate Transparency” (CT), RCF 6962, June 2013

• CT implemented by collecting all certs, see e.g. https://crt.sh/, and 
https://www.certificate-transparency.org/
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the trust backbone of the Web (TLS)
• Some CAs caught in foul play, or were hacked: cert mis-issuance 

                           —> “Certificate Transparency” (CT), RCF 6962, June 2013

• CT implemented by collecting all certs, see e.g. https://crt.sh/, and 
https://www.certificate-transparency.org/

• Instead of central database: 
- fully replicated append-only log  
- gossip-style replication (possible because of monotonic growth) 
- computing trust out of the log, in a trustless way … like SSB, only single app

• Gasser et al: In Log We Trust: Revealing Poor Security Practices with Certificate 
Transparency Logs and Internet Measurements, PAM 2018 conference

https://crt.sh/
https://www.certificate-transparency.org/


Google Cloud Pub/Sub____
Pub/Sub = event notification bus to coordinate distributed apps


• Google’s global service: “a secure, durable, highly available and scalable many-
to-many messaging system”


• durable means: delivery guarantee even if all Google servers crash at the 
same time, hence Google must store an event until all consumers fetched it.


• Crash-resistant storage solutions (e.g. RAFT protocol, WAL) … use logs 

—> ICN services today are relying on logs, but not exposing them to the app 
layer
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• notification not available (“long-lasting interest” hack -> invitation to push)
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Pull-based ICN (e.g. NDN) an awkward "slicing" through the trade-off space:


• notification not available (“long-lasting interest” hack -> invitation to push)


• sending data only possible via interest-abuse: stuff data into interest, 
or put cmd in interest to let “repo” call you back


• it’s called “receiver-driven”, but repo cannot protect against interest flood 
in other words: prefix registration is another “long-lasting interest” hack

But can we do the tradeoffs in a different way, have real global brcast?



Chances of getting Broadcast-only
• LAN looks good: (re-) flooding is feasible, first steps have been explored e.g. 

McCauley et al: The Deforestation of L2, SIGCOMM 2016


Observation: network has one knob - rate. Delay a producer at will, without breaking 
contract.


Long distance brings bottlenecks, needs content selection -> set some producers to rate 0. 
How to select? —> via subscription, this requires a reverse channel:


• instead of repeated interests: 
receiver also acts as producer, puts “I need replica of producer X” in its log once, is 
replicated via broadcast (and consulted by the network), request is valid until revoked.


• More areas to explore: multicast, …
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Summary: Push is for Gods, Pull is for Mortals

• “Global broadcast-only” induces “replicated append-only logs”

• Say NO to “arbigrams”. Better use replicate logs, DONA names  <src,ref>

• Broadcast-only is reality 
Secure Scuttlebutt, PKI, Google Pub/Sub, inside Facebook

• Embrace streams (soliton waves) and multicast, instead of flow-balance

• Look into “batch-oriented” high-perf-networks, beyond TCP 
(lightpath switched networks, “truck full of SSD drives”)


