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Overview

• Common Client Libraries (CCL)
• PSync
• Common Name Library (CNL)
• NDN-RTC
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What are the Common Client Libraries (CCL)?

• Enable client applications to use NDN in C++, Python, JavaScript, Java, .NET
• Common API across languages: http://named-data.net/doc/ndn-ccl-api
• Interest/Data, signatures, encryption, transports, app utilities, unit tests, examples
• Track ndn-cxx research (security, NAC, NDN protocols, NFD interaction)
• Backwards compatibility, platform flexibility for development stability
• Used in NDN-RTC, BMS, mHealth, neighborhood network, web page apps, ICE-AR
• Specialized libraries: NDN-CPP Lite (Arduino), Imp, Android, browser speedups
• Stats (total): 10,771 commits, 277 closed issues, 79 pull requests, 80 forks

http://named-data.net/doc/ndn-ccl-api


Example

face = Face("memoria.ndn.ucla.edu")
name = Name("/ndn/edu/ucla/remap/demo/ndn-js-test/hello.txt/%FDU%8D%9DM")
def onData(interest, data):

print(data.content.toRawStr())
face.expressInterest(name, onData)



CCL Features

• Certificate signing/validating – RSA, ECDSA, HMAC

• Configurable cert chain policies, regex name matching

• Flexible public/private key database API

• Signed Interests – verify with same API as certs

• Name-base access control (AES encryption, RSA key protection)

• MemoryContentCache, SegmentFetcher

• Optional thread-safe network I/O

• Configurable wire format (see below)

• ChronoSync, PSync (see below)

• Unit tests, example programs



CCL wire format abstraction

• API is not hard-wired to one wire format
• Enable backwards compatibility if running with old forwarders

WireFormat.setDefaultWireFormat(Tlv0_1WireFormat.get())

• Can specify on ad hoc basis if sending to a various networks
face.expressInterest(name, onData, Tlv0_1WireFormat.get())

• Was used for transition from CCN 0.x
• Plans to support other ICN wire formats



CCL – Next steps

• NDN wire format v0.3 (with backwards compatibility)
• Typed name components
• Removed (most) Interest selectors
• Interest hop count
• Interest defaults to exact name  (optional CanBePrefix)
• Extra application parameters in the Interest
• Explicit fields for signed interests (instead of using name components)

• New wire formats
• Support new network autoconfig protocols



What is PSync?

• Developed as improvement to ChronoSync
• Used in NLSR to sync routes on the NDN test bed
• Part of the CCL
• Invertible Bloom filter of a set of hashed names

• Send interest with my IBF, receive interests with others’ IBF
• Stable state: Everyone sends the same IBF – Interest aggregation, no Data
• Update: I receive a different IBF with missing names and provide in reply Data
• IBF efficiently updates a set difference of ~275 names

• Eventual consistency from pairwise updates – broadcast not needed
• Option to subscribe to partial namespace updates



Example PSync app

face = Face() 
def onNamesUpdate(names):

print("Got names, starting with " + names[0].toUri())

updateSize = 80
pSync = FullPSync2017(updateSize, face, Name("/sync"), onNamesUpdate)
pSync.publishName(Name(”/edu/ucla/jefft/paper.txt"))



PSync – Next steps

• Implement in Python, JavaScript, Java (currently in C++)
• Use as native sync for the Common Name Library (see below)
• Stress test “eventual consistency” without broadcast
• Support partial PSync (waiting for use case)



What is the Common Name Library (CNL)?

• Library enabling applications to work with hierarchical, named data collections.
• Namespace object (root and child nodes)
• Application interacts with a Namespace node (attach handlers, receive notifications)

• Provides a lightweight way to integrate various:
• Sync mechanisms (i.e., PSync, vector sync)
• Data access patterns (i.e., Consumer/Producer API, fetch latest),
• Publishing models (i.e., publish/subscribe, in-memory content cache),
• Complex namespace queries / pattern matching (i.e., regexp, wildcards),
• Triggered data generation (supporting security)

• Currently using in ICE-AR mobile client application
(No interest-data exchange exposed to developers of that app.) 

• Segmented content with a Meta packet and versioning
• Built-in encode/decode, encrypt/decrypt, sign/verify as part of the pipeline
• New names added to the Namespace tree through PSync, app is notified



CNL Motivation

• Provide tools for working with namespaces as they represent collections, in an 
information-focused rather than communication-oriented way 

• Assume asynchronous network operations will be used to sync the namespace and 
consume/publish objects in the collection

• Insulate non-networking developers from communication details
• Make progress towards NDN as a middleware-replacement in terms of high-level, 

application-facing features, but try to stay as general as possible
• Work with aggregate application-specific objects, not (segmented) blobs in packets
• As a result, support namespace synchronization the way that is conceived / 

described at a high-level, and promote it as an application-level concept to explore
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Example segmented content consumer app

face = Face("memoria.ndn.ucla.edu") 
page = Namespace("/ndn/edu/ucla/remap/demo/ndn-js-test/named-data.net/project/ndn-ar2011.html/%FDX%DC5B")
page.setFace(face)

def onSegmentedObject(namespace):
print("Got segmented object size " + str(namespace.obj.size()))

page.setHandler(SegmentedObjectHandler(onSegmentedObject)).objectNeeded()



Unified publisher/consumer

• objectNeeded() – From application (producer) or network (consumer)

• Producer
• CNL receives Interest, adds to PIT, calls OnObjectNeeded (if not already in cache).
• Handler’s OnObjectNeeded answers True.
• CNL waits for application to produce data asynchronously.
• Application calls setObject().
• CNL does serialize/encrypt/sign and satisfies PIT.

• Consumer
• Application calls OnObjectNeeded for a Namespace node.
• (All handlers answer False.)
• CNL does Face.expressInterest and waits for Data.
• CNL receives Data, does verify/decrypt/deserialize and OnStateChanged(OBJECT_READY)
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CNL – Next steps

• High-performance persistent storage
• Port to Java and JavaScript
• More applications

• Currently used in augmented reality mobile client application



What is NDN-RTC?
• C++ video (HD) streaming library
• Sub-second (~150ms) latency
• VP9 video encoder
• Repository storage for NDN-RTC video
• Platforms supported: macOS, Ubuntu, Android
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Applications

• ICE-AR (AR browser)
• Offload phone POV video for edge processing (object, face, pose recognition)
• Processed information delivered back to the phone to enrich phone’s 

environmental understanding (deep context)

• TouchNDN (theatrical live systems)
• Based on the TouchDesigner media IDE https://www.derivative.ca
• Live video dissemination over L2 to multiple nodes for simultaneous 

processing & storage
• Nodes may perform “historical” streaming from a repo data, seamlessly with 

live streaming

https://www.derivative.ca


NDN-RTC – Next Steps

• Incorporating VP9 SVC layers in the namespace
• Support Region-of-Interest-based fetching (360o video use case)
• Volumetric video streaming



How to learn more

• Common Client Library (CCL)
• C++: https://github.com/named-data/ndn-cpp
• Python: https://github.com/named-data/PyNDN2
• JavaScript: https://github.com/named-data/ndn-js
• Java: https://github.com/named-data/jndn
• C# (.NET Framework): https://github.com/named-data/ndn-dot-net

• PSync: Scalable Name-based Data Synchronization for Named Data Networking
• https://named-data.net/publications/scalable_name-based_data_synchronization/

• Common Name Library (CNL)
• C++: https://github.com/named-data/cnl-cpp
• Python: https://github.com/named-data/PyCNL

• NDN-RTC: https://github.com/remap/ndnrtc

https://github.com/named-data/ndn-cpp
https://github.com/named-data/PyNDN2
https://github.com/named-data/ndn-js
https://github.com/named-data/jndn
https://github.com/named-data/ndn-dot-net
https://named-data.net/publications/scalable_name-based_data_synchronization/
https://github.com/named-data/cnl-cpp
https://github.com/named-data/PyCNL
https://github.com/remap/ndnrtc

