
NDN Libraries
Progress and Plans

March 24, 2019
Jeff Thompson, Jeff Burke

jefft0@remap.ucla.edu

Overview

• Common Client Libraries (CCL)
• PSync
• Common Name Library (CNL)
• NDN-RTC

2

What are the Common Client Libraries (CCL)?

• Enable client applications to use NDN in C++, Python, JavaScript, Java, .NET
• Common API across languages: http://named-data.net/doc/ndn-ccl-api
• Interest/Data, signatures, encryption, transports, app utilities, unit tests, examples
• Track ndn-cxx research (security, NAC, NDN protocols, NFD interaction)
• Backwards compatibility, platform flexibility for development stability
• Used in NDN-RTC, BMS, mHealth, neighborhood network, web page apps, ICE-AR
• Specialized libraries: NDN-CPP Lite (Arduino), Imp, Android, browser speedups
• Stats (total): 10,771 commits, 277 closed issues, 79 pull requests, 80 forks

http://named-data.net/doc/ndn-ccl-api

Example

face = Face("memoria.ndn.ucla.edu")
name = Name("/ndn/edu/ucla/remap/demo/ndn-js-test/hello.txt/%FDU%8D%9DM")
def onData(interest, data):

print(data.content.toRawStr())
face.expressInterest(name, onData)

CCL Features

• Certificate signing/validating – RSA, ECDSA, HMAC

• Configurable cert chain policies, regex name matching

• Flexible public/private key database API

• Signed Interests – verify with same API as certs

• Name-base access control (AES encryption, RSA key protection)

• MemoryContentCache, SegmentFetcher

• Optional thread-safe network I/O

• Configurable wire format (see below)

• ChronoSync, PSync (see below)

• Unit tests, example programs

CCL wire format abstraction

• API is not hard-wired to one wire format
• Enable backwards compatibility if running with old forwarders

WireFormat.setDefaultWireFormat(Tlv0_1WireFormat.get())

• Can specify on ad hoc basis if sending to a various networks
face.expressInterest(name, onData, Tlv0_1WireFormat.get())

• Was used for transition from CCN 0.x
• Plans to support other ICN wire formats

CCL – Next steps

• NDN wire format v0.3 (with backwards compatibility)
• Typed name components
• Removed (most) Interest selectors
• Interest hop count
• Interest defaults to exact name (optional CanBePrefix)
• Extra application parameters in the Interest
• Explicit fields for signed interests (instead of using name components)

• New wire formats
• Support new network autoconfig protocols

What is PSync?

• Developed as improvement to ChronoSync
• Used in NLSR to sync routes on the NDN test bed
• Part of the CCL
• Invertible Bloom filter of a set of hashed names

• Send interest with my IBF, receive interests with others’ IBF
• Stable state: Everyone sends the same IBF – Interest aggregation, no Data
• Update: I receive a different IBF with missing names and provide in reply Data
• IBF efficiently updates a set difference of ~275 names

• Eventual consistency from pairwise updates – broadcast not needed
• Option to subscribe to partial namespace updates

Example PSync app

face = Face()
def onNamesUpdate(names):

print("Got names, starting with " + names[0].toUri())

updateSize = 80
pSync = FullPSync2017(updateSize, face, Name("/sync"), onNamesUpdate)
pSync.publishName(Name(”/edu/ucla/jefft/paper.txt"))

PSync – Next steps

• Implement in Python, JavaScript, Java (currently in C++)
• Use as native sync for the Common Name Library (see below)
• Stress test “eventual consistency” without broadcast
• Support partial PSync (waiting for use case)

What is the Common Name Library (CNL)?

• Library enabling applications to work with hierarchical, named data collections.
• Namespace object (root and child nodes)
• Application interacts with a Namespace node (attach handlers, receive notifications)

• Provides a lightweight way to integrate various:
• Sync mechanisms (i.e., PSync, vector sync)
• Data access patterns (i.e., Consumer/Producer API, fetch latest),
• Publishing models (i.e., publish/subscribe, in-memory content cache),
• Complex namespace queries / pattern matching (i.e., regexp, wildcards),
• Triggered data generation (supporting security)

• Currently using in ICE-AR mobile client application
(No interest-data exchange exposed to developers of that app.)

• Segmented content with a Meta packet and versioning
• Built-in encode/decode, encrypt/decrypt, sign/verify as part of the pipeline
• New names added to the Namespace tree through PSync, app is notified

CNL Motivation

• Provide tools for working with namespaces as they represent collections, in an
information-focused rather than communication-oriented way

• Assume asynchronous network operations will be used to sync the namespace and
consume/publish objects in the collection

• Insulate non-networking developers from communication details
• Make progress towards NDN as a middleware-replacement in terms of high-level,

application-facing features, but try to stay as general as possible
• Work with aggregate application-specific objects, not (segmented) blobs in packets
• As a result, support namespace synchronization the way that is conceived /

described at a high-level, and promote it as an application-level concept to explore

12

Example segmented content consumer app

face = Face("memoria.ndn.ucla.edu")
page = Namespace("/ndn/edu/ucla/remap/demo/ndn-js-test/named-data.net/project/ndn-ar2011.html/%FDX%DC5B")
page.setFace(face)

def onSegmentedObject(namespace):
print("Got segmented object size " + str(namespace.obj.size()))

page.setHandler(SegmentedObjectHandler(onSegmentedObject)).objectNeeded()

Unified publisher/consumer

• objectNeeded() – From application (producer) or network (consumer)

• Producer
• CNL receives Interest, adds to PIT, calls OnObjectNeeded (if not already in cache).
• Handler’s OnObjectNeeded answers True.
• CNL waits for application to produce data asynchronously.
• Application calls setObject().
• CNL does serialize/encrypt/sign and satisfies PIT.

• Consumer
• Application calls OnObjectNeeded for a Namespace node.
• (All handlers answer False.)
• CNL does Face.expressInterest and waits for Data.
• CNL receives Data, does verify/decrypt/deserialize and OnStateChanged(OBJECT_READY)

NAME
EXISTS

INTEREST
EXPRESSED

DATA
RECEIVED

DECRYPTING

OBJECT
READY

OBJECT TYPE /
NAME

STRUCTURE
KNOWN

If an
aggregate
object with

versioning, for
example

OBJECT
READY BUT

STALE

Existing
listeners

VALIDATING
(ALL)

VALIDATE
SUCCESS

(ANY)
VALIDATE
FAILURE

WAITING FOR
DATA

(ANY)
DECRYPTION

ERROR

Child data received
Interest timeout
Child verification error

(ANY)
INTEREST
TIMEOUT

Signing/validation and encryption/decryption may be performed
at both the packet and object level, depending on the object type

(ANY)
INTEREST
NETWORK

NACK

To objectNeeded

PRODUCING
OBJECT

An
OnObjectNeeded

answers true

All
OnObjectNeeded

answer false

ENCRYPTING

(ANY)
ENCRYPTION

ERROR

SIGNING

(ANY)
SIGNING
ERROR

Reply to
pending

incoming
Interests

Where to store child
decrypted content Blobs
before deserializing the

parent object?

objectNeeded() SERIALIZING

setObject()

DESERIALIZING

NDN-CNL: Name node state diagram
Integrating Interest/Data and Packet-/Prefix-level objects

CNL – Next steps

• High-performance persistent storage
• Port to Java and JavaScript
• More applications

• Currently used in augmented reality mobile client application

What is NDN-RTC?
• C++ video (HD) streaming library
• Sub-second (~150ms) latency
• VP9 video encoder
• Repository storage for NDN-RTC video
• Platforms supported: macOS, Ubuntu, Android

NDN Data Packets

/<base-prefix>

<timestamp>

<stream-name>

<seq #> _gop

_latest _live

_meta<segment #> _manifest _meta

_parity

frame payload manifest payload

Content-Type = 'ndnrtc'

Timestamp

Content-Size

Other

gop pos, gop #

capture timestamp

frame type

complete frame

parity size

generation delay

<segment #>

FEC payload

<seq #>

start end

/<stream-prefix>/<seq#> /<stream-prefix>/<seq#>

<version #>

0

1

/<stream-prefix>/<seq#>

/<stream-prefix>/_gop/<seq#>

<version #>

timestamp

publish rate

WxH

bitrate

description

Applications

• ICE-AR (AR browser)
• Offload phone POV video for edge processing (object, face, pose recognition)
• Processed information delivered back to the phone to enrich phone’s

environmental understanding (deep context)

• TouchNDN (theatrical live systems)
• Based on the TouchDesigner media IDE https://www.derivative.ca
• Live video dissemination over L2 to multiple nodes for simultaneous

processing & storage
• Nodes may perform “historical” streaming from a repo data, seamlessly with

live streaming

https://www.derivative.ca

NDN-RTC – Next Steps

• Incorporating VP9 SVC layers in the namespace
• Support Region-of-Interest-based fetching (360o video use case)
• Volumetric video streaming

How to learn more

• Common Client Library (CCL)
• C++: https://github.com/named-data/ndn-cpp
• Python: https://github.com/named-data/PyNDN2
• JavaScript: https://github.com/named-data/ndn-js
• Java: https://github.com/named-data/jndn
• C# (.NET Framework): https://github.com/named-data/ndn-dot-net

• PSync: Scalable Name-based Data Synchronization for Named Data Networking
• https://named-data.net/publications/scalable_name-based_data_synchronization/

• Common Name Library (CNL)
• C++: https://github.com/named-data/cnl-cpp
• Python: https://github.com/named-data/PyCNL

• NDN-RTC: https://github.com/remap/ndnrtc

https://github.com/named-data/ndn-cpp
https://github.com/named-data/PyNDN2
https://github.com/named-data/ndn-js
https://github.com/named-data/jndn
https://github.com/named-data/ndn-dot-net
https://named-data.net/publications/scalable_name-based_data_synchronization/
https://github.com/named-data/cnl-cpp
https://github.com/named-data/PyCNL
https://github.com/remap/ndnrtc

