
NFN – Recent Work on Expression Forwarding

Christopher Scherb · Claudio Marxer · Christian Tschudin

University of Basel, Switzerland

ICNRG Interim Meeting @ IETF 104 Prague, 24 Mar 2019



NFN Mindset

ICN generalization: Deliver cooked results instead of raw data

Idea:
– User defines computation / workflow
– Network finds execution location
– Similar to Serverless Computing, but offers workflow orchestration
– Implemented using Interest / Named Data Object Transport Layer

2



PiCN - pure Python Implementation of NFN

– code available at: https://github.com/cn-uofbasel/PiCN
– includes an ICN Forwarder
– executes Python code under network control

- decomposes complex expressions “in the network”
- optimizes by migrating either code and/or data

(more about this in this talk)
– since recently also for native Intel x86 code
– previous Scala (JVM) support could be added again

3



Example

Client

Input Data 1

Input Data 2

Compute 
Here

Function 
Code

Fetch

Request: <lambda expression>

Fetch

PYTHON
func
def func(a):
    <code>

4



PiCN (cont.)

– Software contains:
- NDN and NFN Forwarder
- client and command line tools
- repo

– modular, easy to extend
– simple simulation and debugging system

5



Qutline

– Basic NFN Principles (what we want to do)
– Layering Overview
– Core of NFN: expression rewriting
– Example: expression rewriting based on FIB information
– Example: expression rewriting based on mobility patterns
– Example: expression rewriting based on pricing
– Orchestration of ”Plans” and creating ”Templates”
– More research topics: result authenticity, compute privacy

6



Architecture / Core Components

ICN Transport Layer

NFN Rewriting

NFN Execution Execute Function Code

Decide where to compute

Forward Messages

7



CCN/NDN Layer

– Basic CCNx/NDN Forwarding
– Hierarchical Names
– Forwarding based on Longest Prefix Matching
– Name in Interest Message contains reference to single

Named Data Object

components of a name 
ICN Transport Layer

NFN Rewriting

NFN Execution

8



NFN Rewriting 1

– Workflow - consisting of Function Calls on Input
Data

– Encoding the Workflow in CCN/NDN Names
– Using λ-calculus to describe workflow
– Name in Interest Message contains references to

multiple Named Data Object
– Magic: Longest Prefix Matching and

Name Rewriting

ICN Transport Layer

NFN Rewriting

NFN Execution

9



NFN Rewriting 2: Name Encoding Example

/func/f1 /data/d1 /func/f2 /data/d2

Workflow: /func/f1 (/data/d1, /func/f1 (/data/d2) )

Names:

Choose One Name to Prepend

/data/d1

NFN - Name Encoding

λ x. /func/f1(x, /func/f2( /data/d2 )data d1 NFNName
Components:

ICN Transport Layer

NFN Rewriting

NFN Execution

10



NFN Execution

– Store Function Code in Named Data Objects
– Any NFN node can execute Function Code by

fetching it over ICN
– Reqeuesting missing Named Data Objects and

Function Code
– Requires Safe Execution Environment (Sandboxing)

ICN Transport Layer

NFN Rewriting

NFN Execution

11



NFN Interest Handling

Transport 

Repo

Transport 

Rewriting

Execution

Transport 

Rewriting

Execution

expression

expression’

data

data

func

12



Rewriting Descisions

Interesting Part:

Which Name to prepend in front of the computation (Rewriting)

– Because: Influnces where to forward a computation
– Defined by a Rewriting Strategy

Should a node forward a computation or execute it locally?

– Determines where to compute a result.
– A node can split a computation into subcomputations ⇒ parallel/distributed

execution

13



Rewriting Strategy

– Simple Rewriting Strategy - inspired by Hadoop
– Goal: Reduce load on links
– Forward a computation request to the input data

(prepend input data)
– Start computation if the prepend data are available

on the node.
– Transport function code to input data

NFN Forwarder

compute?

or

fwd?

<prepended name>/expression

fwd:
<prepended name’>/expression

compute
and return 
result

14



Advanced Expression Rewriting for NFN

– Add additionlal
information to improve the
rewriting descision

– Scenario dependent and
independent

Interest
Name

Interest
Name

Information
from CCN

Information about
the Topology

Information from
Higher Layer (NFN)

Analyze and Reuse 
previous Decisions 

Space of all available Information

L1L2L3L4

15



NFN-Expression Rewriting based on FIB Information - 1

– Use the FIB to decide which name
should be prepended

– Create AST and search for
independent subcomputations

– Split the computation if
subcomputations are forwarded to
different nodes

– Good for Map Reduce and Parallel
Execution

call | name

call | name | expr call | name | expr

call | name | expr call | name | expr

… 

… … 

16



NFN-Expression Rewriting based on FIB Information - 2

call /f1

call /f2

/d1 /d2

call /f3

/d3call /f4

/d4 /d5

independent calls

independent calls

dependent 
calls

independent call/data

17



NFN-Expression Rewriting based on Mobility Patterns

– Use information about mobility
patterns

– e.g. Node is Edge Computing
Node

– e.g. Neighbor Node has no
computational capabilities

– Execute even if prepended data
are not on the node

Vehicle Movement

RSU2RSU1

Request

Handover 

Reply

18



NFN-Expression Rewriting based on the Price - 1

– Request Meta Information about file size,
bandwidth or load

– Compute a Plan for the cheapest execution
possibility

– Storing Plans in Named Data Objects
– Caching and Reusing of Plans (for

subcomputations)

Plan:
Name: <NFN - expression>

Actions: 

1. FWD: prepend <name-1>

2. FWD: prepend <name-1>

3. FWD: prepend <name-2>

4. SPLIT: <Level>

Subplan 1: 
Name <NFN - subexpression-1>

Actions:
1. Exec

Subplan 1: 
Name <NFN - subexpression-2>

Actions:
1. FWD: prepend <name-3>
2. Exec

19



NFN-Expression Rewriting based on the Price - 2

NFN 
Forwarder

IM: <expression>
Plan

Subplan1
Subplan2

Plan

Subplan1
Subplan2

NFN 
Forwarder

IM: <expression>
IM: <subexpression1>
Subplan1

IM: <subexpression2>
Subplan2

IM: Function/Data

FWD:
prepend 
Name

Split
computation

<Name to prepend>

20



NFN-Expression Rewriting based on Templates - 1

– Create Templates based on the Planning
Process

– Idea: Instead of creating a new Rewriting
Strategy, let the network learn from
previous situations (or simulation)

– Compare AST structure and names within
the AST

– Introduce Wildcard Names into the Plans
– Based on Observation and Statistics:

- < prefix > /name-1 ... < prefix > /name-n
→ Action a

- if n > x → reduce < prefix > /∗
– In future with Machine Learning?

Plan1:
Name: expr-1

Actions:
a1, … , an

Plan2:
Name: expr-2

Actions:
a1, … , an

Plan*:
Name: expr-*

Actions:
a1, … , an

21



NFN-Expression Rewriting based on Templates - 2
– A Templete is a Tuple: < AST∗,Action >
– A request is matched against the AST containing the Wildcards

call /func/f1

call /func/f2

/data/d1 /d2

call /func/f3

/d3call /f4

/d4 /d5

Request

call /func/*

call /func/*

/data/* /d2

call /func/*

/d3call /f4

/d4 /d5

Template

22



Result Authenticity

– Data are secured by signatures, what about results
– Question: How can you know the result is correct?
– Idea: Signed by execution node.
– Add Signatures of the Input Data and the Function Code
– Item: No Proof, but enables users to find out which nodes are fooling

23



Data Security

– Question: How to deal with sensible input data?
– Intel SGX may be a way
– Hormomorphic Computing (increases runtime)
– Only real solution: Do it local

24



Software

– PiCN
– https://github.com/cn-uofbasel/PiCN
– ICN and NFN Forwarder, Client Tools, Repository
– Modular, easy to extend
– NFN Rewriting Strategies as Plugins
– Simple Simulation System

25

https://github.com/cn-uofbasel/PiCN


References

– https://github.com/cn-uofbasel/PiCN
– An information centric network for computing the distribution of computations

(M. Sifalakis, B. Kohler, C. Scherb, C. Tschudin)
– Access-controlled in-network processing of named data (C. Marxer, C. Scherb,

C. Tschudin)
– Resolution Strategies for Networking the IoT at the Edge via Named Functions

(C. Scherb, D. Grewe, M. Wagner, C. Tschudin)
– Execution State Management in Named Function Networking (C. Scherb, B. Faludi,

C. Tschudin)
– A Packet Rewriting Core for Information Centric Networking (C. Scherb,

M. Sifalakis, C. Tschudin)
– Smart Execution Strategy Selection for Multi Tier Execution in Named Function

Networking (C. Scherb, C. Tschudin)
26

https://github.com/cn-uofbasel/PiCN


Question

27


