Push It - update 2:
a P2P protocol for Append-Only Push (AOP)

Christian Tschudin, U of Basel, Switzerland

ICNRG interim meeting in Macao, China
September 27, 2019

——— t‘.ﬂ-
UNIVERSI DADE DE MACAU

® Accumulative information, items typically named
by some hash

T ® GGlobal broadcast-only semantics:

= N A -/f;'n\\n
e 4 \“‘-“,‘V/‘\j‘!-‘.: . W R e o ———
Ty A AT L e, AR AN

T v £ & e 7
A R N e = S A A |
ARG I N S SRR e >

w&%{":‘&‘f@’?@ . novelty is replicated everywhere, eventually
® History:
- Sep 2018 / panel at ICN18
- Mar 2019 / ICNRG Prague: broadcast-only
- Jul 2019 / ICNRG Montreal, update 1:

T problems of pull (e.g., “recursion corridor”)

ACCUMULATION OF .
IMMUTABLE DATA NOVELTY ® [oday’s update 2: zoom-in to the protocol level

Vi

rl Lo ‘: | B 2% g]
S et AN LY e | |
PON L /‘\ R, ¥ g 2 N
T ATAY 7 \V/
" ; J UMD ST S . — RN X
¥ b T AR /) N\ \‘

i = Y9 SO T RVAL N 2 & b
AN A W2 AT 7 3 \} = 1
- ". : a) \ I'/ S "")’\ 1)‘ \)

/7 b1 WA ¢ AN o~ O /)
J N b8 W <) ho \
A\ " 2 AN ./‘(V= ' A \/ W A
A\ Ad UL - < \
/\\.r:. v N P N / 7 \

; 2\ [VA % 2/ RNKZ AN .
X oINS 2NE
2 X R BN N €l .
_’,’) A s '/ 5
) A
\N

1.

Overview

Recap: Secure Scuttlebutt’s append-only logs

. Logical design of a replication protocol
. Two iImplementation styles: pullified vs pushified
. AOP - a pushified replication protocol

. A surprise guest

Status and Conclusions

1) Append-only logs (SSB fame)
" oublc key of a key pai = = B B

seqno=1 seqno=2 seqno=3 seqno=4
 Append-only log
= hash chain of signed events PS5 [aop1 | app | -
and
: : libs d tadata—protecti
» Task of the replication layer: ’ "1 tangle | | gneryption wrapper
- propagate novelty unconditionally
dissemi_ SSB-over-IP: 0 other
nation SHS, muxrpc, S| @ | replication
peer—discovery, | 2 | g | and
and EBT o | 8| storage
storage = | & | means..

Figure 2: Secure Scuttlebutt’s protocol stack.

1’) Append-Only logs

Initial equilibrium

Given: Two nodes N1 and N2
with their sets of logs

O w>

- B
l I g
Replication task when N1 and N2 peer:

N1 N2

1’) Append-Only logs

Given: Two nodes N1 and N2 o

with their sets of logs C
Replication task when N1 and N2 peer:

A

B

C

Initial equilibrium

> 4

before peering

OO W

N1 N2

OO0OW

1’) Append-Only logs

Given: Two nodes N1 and N2
with their sets of logs

Replication task when N1 and N2 peer:

* Jo “level out” novelty
- any log extensions that N1 has but N2 is
lacking, must be copied to N2
- and vice versa

O w>

Ow>

Initial equilibrium

> 4

before peering

OO W

N1 N2

OO0OW

1’) Append-Only logs

Initial equilibrium

Given: Two nodes N1 and N2 Q R
with their sets of logs C
3 -
Replication task when N1 and N2 peer: before peering
A B
e Jo “level out” nc)ve|ty ch e _-
- any log extensions that N1 has but N2 is I
lacking, must be copied to N2 aftelrpeeﬁng
- and vice versa A
B -
C
I

N1

N2

OO W OO0OW

OO0OW

1’) Append-Only logs

Given: Two nodes N1 and N2
with their sets of logs

Replication task when N1 and N2 peer:

* Jo “level out” novelty
- any log extensions that N1 has but N2 is
lacking, must be copied to N2
- and vice versa

* Applies to the intersection of the log sets

Ow> Ow>

Ow>

Initial equilibrium

> 4

before peering

> 4

after peering

OO0OW

N1

N2

OO0OW

OO W

2) AOP - logical design

a la FTP (a replication protocol): E

separate control and data channels: NP Sorven ETP Clioat
Port 20 Port 21
Data Command Port5150 Port 5151

© FTP Client opens command
Port 3268
channel to FTP Server and 0
requests “passive” mode

@ FTP Server allocates port for
the data channel and transmits
the port number to use for
data transmission

© FTP Client opens the data
channel on the specified port

2) AOP - logical design

a la FTP (a replication protocol): E

separate control and data channels: STS Sures b
Port 20 Port 21
: Data Command Port5150 Port 5151

e Control dialogue * *

- confi gu ration © FTP Client opens command Port 3268

channel to FTP Server and
- COMm mandS requests “passive” mode
- Status @ FTP Server allocates port for

the data channel and transmits
the port number to use for
data transmission

© FTP Client opens the data
channel on the specified port

2) AOP - logical design

a la FTP (a replication protocol): E

separate control and data channels: N G FTP Client
Port 20 Port 21
: Data Command Port5150 Port 5151

e Control dialogue * *

- confi gu ration © FTP Client opens command Port 3268

channel to FTP Server and
- commands requests “passive” mode
- Status @® FTP Server allocates port for

the data channel and transmits
the port number to use for
data transmission

e Data
actual transfer of information © FTP Client opens the data

channel on the specified port

2’) AOP - logical design

AOP = Append-only Push // or: “Append-only (replication) Protocol”, or ...

Control verbs:

2’) AOP - logical design

AOP = Append-only Push // or: “Append-only (replication) Protocol”, or ...

Control verbs:

HELLO my_1d=N1 dh=%#$% # handshake msgs, incl DH negotiation

2’) AOP - logical design

AOP = Append-only Push // or: “Append-only (replication) Protocol”, or ...

Control verbs:

HELLO my_1d=N1 dh=%#$% # handshake msgs, incl DH negotiation
PORT udp=1.2.3.4/567 # configuration details

2’) AOP - logical design

AOP = Append-only Push // or: “Append-only (replication) Protocol”, or ...

Control verbs:

HELLO my_1d=N1 dh=%#$% # handshake msgs, incl DH negotiation
PORT udp=1.2.3.4/567 # configuration details

CREDIT 4 # flow control (back pressure)

2’) AOP - logical design

AOP = Append-only Push // or: “Append-only (replication) Protocol”, or ...

Control verbs:

HELLO my_1d=N1 dh=%#$% # handshake msgs, incl DH negotiation
PORT udp=1.2.3.4/567 # configuration details
CREDIT 4 # flow control (back pressure)

WANT B:5 credit=2 # I have B:4, send anything newer

2’) AOP - logical design

AOP = Append-only Push // or: “Append-only (replication) Protocol”, or ...

Control verbs:

HELLO my_1d=N1 dh=%#$ # handshake msgs, incl DH negotiation
PORT udp=1.2.3.4/567 # configuration details

CREDIT 4 # flow control (back pressure)

WANT B:5 credit=2 # I have B:4, send anything newer
WANT C:7 # I have C:6, send anything newer
WANT ... # many more WANTs declarations

2’) AOP - logical design

AOP = Append-only Push // or: “Append-only (replication) Protocol”, or ...

Control verbs:

HELLO my_1d=N1 dh=%#$ # handshake msgs, incl DH negotiation
PORT udp=1.2.3.4/567 # configuration details

CREDIT 4 # flow control (back pressure)

WANT B:5 credit=2 # I have B:4, send anything newer
WANT C:7 # I have C:6, send anything newer
WANT ... # many more WANTs declarations

HAVE A:3 # optional: announce log set

2’) AOP - logical design

AOP = Append-only Push // or: “Append-only (replication) Protocol”, or ...

Control verbs:

HELLO my_1d=N1 dh=%#$ # handshake msgs, incl DH negotiation
PORT udp=1.2.3.4/567 # configuration details

CREDIT 4 # flow control (back pressure)

WANT B:5 credit=2 # I have B:4, send anything newer
WANT C:7 # I have C:6, send anything newer
WANT ... # many more WANTs declarations

HAVE A:3 # optional: announce log set

2’) AOP - logical design

AOP = Append-only Push // or: “Append-only (replication) Protocol”, or ...

Control verbs:

HELLO my_1d=N1 dh=%#$ # handshake msgs, incl DH negotiation
PORT udp=1.2.3.4/567 # configuration details

CREDIT 4 # flow control (back pressure)

WANT B:5 credit=2 /sub’ anything newer

WANT C:7 10, send anything newer
WANT ... # many more WANTs declarations

HAVE A:3 # optional: announce log set

2”) AOP - logical design

Show time-sequence diagram here,
and ports ..

3) Pullified

Pullified implementation style:

NDN:

* “mainstream”, client/server mindset, RPC
WANT 1tem=d,

* chosen by NDN, SSB (!) \(C:edlt=1)
—

Pushified Sty|e: The “want” (interest) can be long-lived:
WANT 1tem=d,

o See later in this slide set. \(c:ed it=1)
* Note: AOP is not SSB (yet)
«m

3) Pullified

Pullified implementation style:

NDN:

* “mainstream”, client/server mindset, RPC
WANT 1tem=d,

* chosen by NDN, SSB (!) \(C:edlt=1)
—

Pushified Sty|e: The “want” (interest) can be long-lived:
WANT 1tem=d,

o See later in this slide set. \(c:ed it=1)

* Note: AOP is not SSB (yet) / PUSH
ovelty

3%) Pullified

SSB:
Pullified implementation style: I‘;Zizqfe
shake”
e “mainstream”, client/server mindset, RPC protocol
WANT C:5, credit=2 —>
* chosen by NDN, SSB (!) RPC createStream(id=C, seg=5, max=
..~ PUSH
o7,
A/
Sl
&

overall backpressure (the CREDIT verb): via underlying TCP stream

3”) One Problem of Pullification

In SSB:

_—

3”) One Problem of Pullification

In SSB: >

* At peering time, potentially (and in practice)
thousands of RPC requests

* A nuisance for user end nodes that often
have only one log with novelty

3”) One Problem of Pullification

In SSB: >

* At peering time, potentially (and in practice)
thousands of RPC requests

* A nuisance for user end nodes that often
have only one log with novelty

In NDN:

e Must repeatedly re-issue the WANT LLI
(long-lived interest) because peer could have crashed. -
This will also be hundreds or thousands LLIs, in the future

4) Pushified replication in AOP

before crash

Main idea:

- nodes append their WANT items
to separate logs (W1, W2)

- these "WANT logs™ being replicated
like all others logs = “caching”

- but not replicated beyond the peer
after crash

4) Pushified replication in AOP

before crash
Main idea:
- nodes append their WANT items
to separate logs (W1, W2)
- these "WANT logs™ being replicated
like all others logs = “caching”

- but not replicated beyond the peer
after crash

Advantage: “free” recovery after crash,
or at a future peering time

Reminder: log W2 contains all log I1Ds
that node N2 wants

4) Pushified replication in AOP

before crash

Main idea:

- nodes append their WANT items
to separate logs (W1, W2)

- these "WANT logs™ being replicated
like all others logs = “caching”

- but not replicated beyond the peer

Advantage: “free” recovery after crash,

or at a future peering time

¢—> HELLO 1d N1 want 1d Wl

> WANT W2:1

<— HELLO id=N2, want_1id=W2

WANT B:5)|
WANT C:7)]

<— W2:1 (~
<— W2:2 (~

after crash

4) Pushified replication in AOP

Main idea:

- nodes append their WANT items
to separate logs (W1, W2)

- these "WANT logs™ being replicated
like all others logs = “caching”

- but not replicated beyond the peer

Advantage: “free” recovery after crash,
or at a future peering time

Reminder: log W2 contains all log I1Ds
that node N2 wants

> WANT W2:1

before crash

—> HELLO id=N1, want_id=W1 ;
<— HELLO id=N2, want_id=W2

<— W2:1 (~ WANT B:5)]

<— W2:2 (~ WANT C:7)|

| <— HELLO id=N2, want_id=w2

after crash

= —

—> HELLO id=N1, want id=w1

—> WANT W2:15
<— W2:15 (~ WANT M:1)

<— W2:16 (~ UNWANT B)

|

5) A surprise guest: TCP

We do some relabelling:

5) A surprise guest: TCP

We do some relabelling:

e HELLO
becomes TCP’s 3-way handshake

HELLO my_1d=N1l, want_1d=C:25, have_1d=D:78

5) A surprise guest: TCP

We do some relabelling:

e HELLO
becomes TCP’s 3-way handshake

HELLO my_1d=N1l, want_1d=C:25, have_1d=D:78

e tcp_ack=34 -> WANT C:35 —

5) A surprise guest: TCP

We do some relabelling:

e HELLO
becomes TCP’s 3-way handshake

HELLO my_1d=N1l, want_1d=C:25, have_1d=D:78
e tcp_ack=34 -> WANT C:35 —

e tcp seq=44 —> HAVE D:44

5) A surprise guest: TCP

P:
We do some relabelling:

becomes TCP’s 3-way handshake _

* HELLO

HELLO my_ 1d=N1, want_1d=C:25, have_1d=D:78
e tcp ack=34 —> WANT C:35 —

e tcp seq=44 —> HAVE D:44

5) A surprise guest: TCP

P:

We do some relabelling:

e HELLO
becomes TCP’s 3-way handshake

HELLO my_ 1d=N1, want_1d=C:25, have_1d=D:78
e tcp ack=34 —> WANT C:35 —
e tcp seq=44 —> HAVE D:44

e Cumulative ACK: in TCP and AOP

5) A surprise guest: TCP

P:

We do some relabelling:

e HELLO
becomes TCP’s 3-way handshake

HELLO my_ 1d=N1, want_1d=C:25, have_1d=D:78
e tcp_ack=34 —> WANT C:35 —
e tcp seq=44 —> HAVE D:44
 Cumulative ACK: in TCP and AOP

Not a suprise, really: TCP is a “replication protocol”, can also
be called a “controlled push” (=sender driven, flow-controlled)

5’) A surprise guest: TCP

TCP ... in comparison to NDN and AOP

5’) A surprise guest: TCP

TCP ... in comparison to NDN and AOP

* NDN “pulls content via (TCP’s) ACK”
- has credit="
- lacks cumulative ACK
(together this feature is called “flow balance”)
- have to use parallel Interests to fill the pipeline

5’) A surprise guest: TCP

TCP ... in comparison to NDN and AOP

* NDN “pulls content via (TCP’s) ACK”
- has credit="
- lacks cumulative ACK
(together this feature is called “flow balance”)
- have to use parallel Interests to fill the pipeline

 AOP more like TCP
- “stream” thinking, cumulative ack
- both remember information frontier (packet loss)
- difference to TCP: AOP supports multiple streams,
AOP can resume its streaming after a node crash, hides “Internet weather”

6) Status and Conclusions

AOP is a pushified version of a replication protocol for event streams
 AOP is not SSB: perhaps SSB will adopt it?

 AOP is not a general pub/sub:
- strict (crypto-enforced) log discipline
- reliable
- producer-centric (e.g., no N:1 sending to a “topic channel”)

e AOP is not TCP, but includes similar mindset

6) Status and Conclusions

AOP is a pushified version of a replication protocol for event streams
 AOP is not SSB: perhaps SSB will adopt it?

 AOP is not a general pub/sub:
- strict (crypto-enforced) log discipline
- reliable
- producer-centric (e.g., no N:1 sending to a “topic channel”)

e AOP is not TCP, but includes similar mindset

AOP: running Python Proof-of-Concept
for connection-less settings (UDP, ethernet)

