
Push it - update 2: 
a P2P protocol for Append-Only Push (AOP)

Christian Tschudin, U of Basel, Switzerland  

ICNRG interim meeting in Macao, China
September 27, 2019

Context
• Accumulative information, items typically named

by some hash

• Global broadcast-only semantics: 
novelty is replicated everywhere, eventually

• History: 
- Sep 2018 / panel at ICN18 
- Mar 2019 / ICNRG Prague: broadcast-only 
- Jul 2019 / ICNRG Montreal, update 1: 
 problems of pull (e.g., “recursion corridor”)

• Today’s update 2: zoom-in to the protocol levelACCUMULATION OF 
IMMUTABLE DATA

NOVELTY

Overview
1. Recap: Secure Scuttlebutt’s append-only logs

2. Logical design of a replication protocol

3. Two implementation styles: pullified vs pushified

4. AOP - a pushified replication protocol

5. A surprise guest

6. Status and Conclusions

1) Append-only logs (SSB fame)
• Producer ID 

= public key of a key pair

• Append-only log 
= hash chain of signed events

• Task of the replication layer: 
- propagate novelty unconditionally 
- often called “push”

seqno=1 seqno=2 seqno=3 seqno=4

1’) Append-Only logs
Given: Two nodes N1 and N2 
 with their sets of logs

Replication task when N1 and N2 peer:

A 
B 
C

B 
C 
D

N1 N2

initial equilibrium

1’) Append-Only logs
Given: Two nodes N1 and N2 
 with their sets of logs

Replication task when N1 and N2 peer:

A 
B 
C

B 
C 
D

N1 N2

initial equilibrium

A 
B 
C

B 
C 
D

before peering

1’) Append-Only logs
Given: Two nodes N1 and N2 
 with their sets of logs

Replication task when N1 and N2 peer:

• To “level out” novelty 
- any log extensions that N1 has but N2 is 
 lacking, must be copied to N2 
- and vice versa

A 
B 
C

B 
C 
D

N1 N2

initial equilibrium

A 
B 
C

B 
C 
D

before peering

1’) Append-Only logs
Given: Two nodes N1 and N2 
 with their sets of logs

Replication task when N1 and N2 peer:

• To “level out” novelty 
- any log extensions that N1 has but N2 is 
 lacking, must be copied to N2 
- and vice versa

A 
B 
C

B 
C 
D

N1 N2

initial equilibrium

A 
B 
C

B 
C 
D

before peering

A 
B 
C

B 
C 
D

after peering

1’) Append-Only logs
Given: Two nodes N1 and N2 
 with their sets of logs

Replication task when N1 and N2 peer:

• To “level out” novelty 
- any log extensions that N1 has but N2 is 
 lacking, must be copied to N2 
- and vice versa

• Applies to the intersection of the log sets

A 
B 
C

B 
C 
D

N1 N2

initial equilibrium

A 
B 
C

B 
C 
D

before peering

A 
B 
C

B 
C 
D

after peering

2) AOP - logical design
à la FTP (a replication protocol): 
separate control and data channels:

2) AOP - logical design
à la FTP (a replication protocol): 
separate control and data channels:

• Control dialogue 
- configuration 
- commands 
- status

2) AOP - logical design
à la FTP (a replication protocol): 
separate control and data channels:

• Control dialogue 
- configuration 
- commands 
- status

• Data 
actual transfer of information

2’) AOP - logical design
AOP = Append-only Push // or: “Append-only (replication) Protocol”, or …

Control verbs: 

2’) AOP - logical design
AOP = Append-only Push // or: “Append-only (replication) Protocol”, or …

Control verbs: 

HELLO my_id=N1 dh=%#$ # handshake msgs, incl DH negotiation…

2’) AOP - logical design
AOP = Append-only Push // or: “Append-only (replication) Protocol”, or …

Control verbs: 

HELLO my_id=N1 dh=%#$ # handshake msgs, incl DH negotiation…
PORT udp=1.2.3.4/567 # configuration details

2’) AOP - logical design
AOP = Append-only Push // or: “Append-only (replication) Protocol”, or …

Control verbs: 

HELLO my_id=N1 dh=%#$ # handshake msgs, incl DH negotiation…
PORT udp=1.2.3.4/567 # configuration details
CREDIT 4 # flow control (back pressure)

2’) AOP - logical design
AOP = Append-only Push // or: “Append-only (replication) Protocol”, or …

Control verbs: 

HELLO my_id=N1 dh=%#$ # handshake msgs, incl DH negotiation…
PORT udp=1.2.3.4/567 # configuration details
CREDIT 4 # flow control (back pressure)
WANT B:5 credit=2 # I have B:4, send anything newer

2’) AOP - logical design
AOP = Append-only Push // or: “Append-only (replication) Protocol”, or …

Control verbs: 

HELLO my_id=N1 dh=%#$ # handshake msgs, incl DH negotiation…
PORT udp=1.2.3.4/567 # configuration details
CREDIT 4 # flow control (back pressure)
WANT B:5 credit=2 # I have B:4, send anything newer
WANT C:7 # I have C:6, send anything newer 
WANT ... # many more WANTs declarations

2’) AOP - logical design
AOP = Append-only Push // or: “Append-only (replication) Protocol”, or …

Control verbs: 

HELLO my_id=N1 dh=%#$ # handshake msgs, incl DH negotiation…
PORT udp=1.2.3.4/567 # configuration details
CREDIT 4 # flow control (back pressure)
WANT B:5 credit=2 # I have B:4, send anything newer
WANT C:7 # I have C:6, send anything newer 
WANT ... # many more WANTs declarations
HAVE A:3 # optional: announce log set

2’) AOP - logical design
AOP = Append-only Push // or: “Append-only (replication) Protocol”, or …

Control verbs: 

HELLO my_id=N1 dh=%#$ # handshake msgs, incl DH negotiation…
PORT udp=1.2.3.4/567 # configuration details
CREDIT 4 # flow control (back pressure)
WANT B:5 credit=2 # I have B:4, send anything newer
WANT C:7 # I have C:6, send anything newer 
WANT ... # many more WANTs declarations
HAVE A:3 # optional: announce log set

2’) AOP - logical design
AOP = Append-only Push // or: “Append-only (replication) Protocol”, or …

Control verbs: 

HELLO my_id=N1 dh=%#$ # handshake msgs, incl DH negotiation…
PORT udp=1.2.3.4/567 # configuration details
CREDIT 4 # flow control (back pressure)
WANT B:5 credit=2 # I have B:4, send anything newer
WANT C:7 # I have C:6, send anything newer 
WANT ... # many more WANTs declarations
HAVE A:3 # optional: announce log set

 also called “subscribe” in pub/sub

2’’) AOP - logical design

Show time-sequence diagram here, 
and ports …

3) Pullified vs Pushified replication
Pullified implementation style:

• “mainstream”, client/server mindset, RPC

• chosen by NDN, SSB (!)

 
Pushified style:

• See later in this slide set.

• Note: AOP is not SSB (yet)

ack

helloNDN:

D

WANT item=d, 
 (credit=1)

The “want” (interest) can be long-lived:

Novelty

WANT item=d, 
 (credit=1)

3) Pullified vs Pushified replication
Pullified implementation style:

• “mainstream”, client/server mindset, RPC

• chosen by NDN, SSB (!)

 
Pushified style:

• See later in this slide set.

• Note: AOP is not SSB (yet)

ack

helloNDN:

D

WANT item=d, 
 (credit=1)

The “want” (interest) can be long-lived:

Novelty

WANT item=d, 
 (credit=1)

PUSH

3’) Pullified vs Pushified replication
Pullified implementation style:

• “mainstream”, client/server mindset, RPC

• chosen by NDN, SSB (!)

 

SSB:

WANT C:5, credit=2 -> 
RPC createStream(id=C,seq=5,max=2)

C:5
C:6

C:7

“secure 
hand- 
shake” 
protocol

overall backpressure (the CREDIT verb): via underlying TCP stream

PUSH

3’’) One Problem of Pullification
In SSB:

SSB:

WANT C:5, credit=2 -> 
RPC createStream(id=C,seq=5,max=2)

C:5
C:6

C:7

“secure 
hand- 
shake” 
protocol

3’’) One Problem of Pullification
In SSB:

• At peering time, potentially (and in practice) 
thousands of RPC requests

• A nuisance for user end nodes that often 
have only one log with novelty

SSB:

WANT C:5, credit=2 -> 
RPC createStream(id=C,seq=5,max=2)

C:5
C:6

C:7

“secure 
hand- 
shake” 
protocol

3’’) One Problem of Pullification
In SSB:

• At peering time, potentially (and in practice) 
thousands of RPC requests

• A nuisance for user end nodes that often 
have only one log with novelty

In NDN:

• Must repeatedly re-issue the WANT LLI 
(long-lived interest) because peer could have crashed. 
This will also be hundreds or thousands LLIs, in the future

SSB:

WANT C:5, credit=2 -> 
RPC createStream(id=C,seq=5,max=2)

C:5
C:6

C:7

“secure 
hand- 
shake” 
protocol

4) Pushified replication in AOP
Main idea: 
- nodes append their WANT items 
 to separate logs (W1, W2) 
- these “WANT logs” being replicated 
 like all others logs = “caching” 
- but not replicated beyond the peer

before crash

after crash

4) Pushified replication in AOP
Main idea: 
- nodes append their WANT items 
 to separate logs (W1, W2) 
- these “WANT logs” being replicated 
 like all others logs = “caching” 
- but not replicated beyond the peer

Advantage: “free” recovery after crash, 
or at a future peering time

Reminder: log W2 contains all log IDs 
that node N2 wants

before crash

after crash

4) Pushified replication in AOP
Main idea: 
- nodes append their WANT items 
 to separate logs (W1, W2) 
- these “WANT logs” being replicated 
 like all others logs = “caching” 
- but not replicated beyond the peer

Advantage: “free” recovery after crash, 
or at a future peering time

Reminder: log W2 contains all log IDs 
that node N2 wants

-> HELLO id=N1, want_id=W1
<- HELLO id=N2, want_id=W2

-> WANT W2:1
<- W2:1 (~ WANT B:5)
<- W2:2 (~ WANT C:7)

...

before crash

after crash

4) Pushified replication in AOP
Main idea: 
- nodes append their WANT items 
 to separate logs (W1, W2) 
- these “WANT logs” being replicated 
 like all others logs = “caching” 
- but not replicated beyond the peer

Advantage: “free” recovery after crash, 
or at a future peering time

Reminder: log W2 contains all log IDs 
that node N2 wants

-> HELLO id=N1, want_id=W1
<- HELLO id=N2, want_id=W2

-> WANT W2:1
<- W2:1 (~ WANT B:5)
<- W2:2 (~ WANT C:7)

...

-> HELLO id=N1, want_id=W1
<- HELLO id=N2, want_id=W2

-> WANT W2:15
<- W2:15 (~ WANT M:1)
<- W2:16 (~ UNWANT B)

...

before crash

after crash

5) A surprise guest: TCP
We do some relabelling:

5) A surprise guest: TCP
We do some relabelling:

• HELLO 
becomes TCP’s 3-way handshake 
 
HELLO my_id=N1, want_id=C:25, have_id=D:78

5) A surprise guest: TCP
We do some relabelling:

• HELLO 
becomes TCP’s 3-way handshake 
 
HELLO my_id=N1, want_id=C:25, have_id=D:78

• tcp_ack=34 -> WANT C:35 —>

5) A surprise guest: TCP
We do some relabelling:

• HELLO 
becomes TCP’s 3-way handshake 
 
HELLO my_id=N1, want_id=C:25, have_id=D:78

• tcp_ack=34 -> WANT C:35 —>

• tcp_seq=44 -> HAVE D:44

5) A surprise guest: TCP
We do some relabelling:

• HELLO 
becomes TCP’s 3-way handshake 
 
HELLO my_id=N1, want_id=C:25, have_id=D:78

• tcp_ack=34 -> WANT C:35 —>

• tcp_seq=44 -> HAVE D:44

TCP:

ID=<src,dst>, seq=X, ack=Y, 
[optional data byte (events)]

5) A surprise guest: TCP
We do some relabelling:

• HELLO 
becomes TCP’s 3-way handshake 
 
HELLO my_id=N1, want_id=C:25, have_id=D:78

• tcp_ack=34 -> WANT C:35 —>

• tcp_seq=44 -> HAVE D:44

• Cumulative ACK: in TCP and AOP

TCP:

ID=<src,dst>, seq=X, ack=Y, 
[optional data byte (events)]

5) A surprise guest: TCP
We do some relabelling:

• HELLO 
becomes TCP’s 3-way handshake 
 
HELLO my_id=N1, want_id=C:25, have_id=D:78

• tcp_ack=34 -> WANT C:35 —>

• tcp_seq=44 -> HAVE D:44

• Cumulative ACK: in TCP and AOP

Not a suprise, really: TCP is a “replication protocol”, can also
be called a “controlled push” (=sender driven, flow-controlled)

TCP:

ID=<src,dst>, seq=X, ack=Y, 
[optional data byte (events)]

5’) A surprise guest: TCP
TCP … in comparison to NDN and AOP

5’) A surprise guest: TCP
TCP … in comparison to NDN and AOP

• NDN “pulls content via (TCP’s) ACK” 
- has credit=1 
- lacks cumulative ACK 
 (together this feature is called “flow balance”) 
- have to use parallel Interests to fill the pipeline

5’) A surprise guest: TCP
TCP … in comparison to NDN and AOP

• NDN “pulls content via (TCP’s) ACK” 
- has credit=1 
- lacks cumulative ACK 
 (together this feature is called “flow balance”) 
- have to use parallel Interests to fill the pipeline

• AOP more like TCP 
- “stream” thinking, cumulative ack 
- both remember information frontier (packet loss) 
- difference to TCP: AOP supports multiple streams, 
 AOP can resume its streaming after a node crash, hides “Internet weather”

6) Status and Conclusions
AOP is a pushified version of a replication protocol for event streams

• AOP is not SSB: perhaps SSB will adopt it?

• AOP is not a general pub/sub: 
- strict (crypto-enforced) log discipline 
- reliable 
- producer-centric (e.g., no N:1 sending to a “topic channel”)

• AOP is not TCP, but includes similar mindset

6) Status and Conclusions
AOP is a pushified version of a replication protocol for event streams

• AOP is not SSB: perhaps SSB will adopt it?

• AOP is not a general pub/sub: 
- strict (crypto-enforced) log discipline 
- reliable 
- producer-centric (e.g., no N:1 sending to a “topic channel”)

• AOP is not TCP, but includes similar mindset

AOP: running Python Proof-of-Concept 
for connection-less settings (UDP, ethernet)

