Quality of Service for ICN in the IoT

draft-gundogan-icnrg-iqtqs-01
ICNRG Interim, Macau

Cenk Gündoğan¹ Thomas Schmidt¹ Matthias Wählich²
Michael Frey³ Felix Shzu-Juraschek³ Jakob Pfender⁴

¹HAW Hamburg
²Freie Universität Berlin
³Safety IO
⁴VUW

September 27, 2019
Draft Positioning

- **draft-oran-icnrg-qosarch-01**
 - Outlines available resources and major differences for QoS in ICN vs IP
 - A strawman set of principles to guide QoS architecture for ICN

- **draft-moiseenko-icnrg-flowclass-04**
 - Proposes two methods for flow classification based on names
 - Uses indicators (additional TLV / name components) to map prefix to class

- **draft-oran-icnrg-flowbalance-01**
 - Maintain flow balance by accommodating wide dynamic range in Data MTU
 - Requester signals *expected Data size* in Interest message

- **draft-anilj-icnrg-dnc-qos-icn-01**
 - Uses name components to indicate routable part of name
 - Consumer adds QoS markers to non-routable part
 - Prefix matching of PIT, CS, FIB is adjusted accordingly

- **draft-gundogan-icnrg-iotqos-01**
 - Uses longest prefix match against preconfigured list for flow classification
 - **Focus:** Balance resources (link-layer buffer, CS, PIT) using correlations
Quality Dimensions

Toxic gas alerts in underground mines

Temperature readings in a class room
Resource Management Rules

1. Isolated Decisions
 - Forwarding Queue
 - Delay regular traffic
 - Pending Interest Table
 - Evict regular for prompt
 - Content Store
 - Evict regular for reliable

2. Resource Correlations
 - CS—PIT Correlation
 - Prompt Data meets no PI
 ⇒ cached with priority
 - CS—Forward. Correlation
 - Prompt Data dropped
 ⇒ cached with priority

3. Distributed Coordination
 - PIT Coherence
 - Same config. at all nodes
 ⇒ Regular < Reliable < Prompt
 - CS Efficiency
 - Same config. at all nodes
 ⇒ Regular < Prompt < Reliable
Resource Management Rules

1. Isolated Decisions

Forwarding Queue
Delay regular traffic

Pending Interest Table
Evict regular for prompt

Content Store
Evict regular for reliable

2. Resource Correlations

CS—PIT Correlation
Prompt Data meets no PI ⇒ cached with priority

CS—Forward. Correlation
Prompt Data dropped ⇒ cached with priority

3. Distributed Coordination

PIT Coherence
Same config. at all nodes ⇒ Regular < Reliable < Prompt

CS Efficiency
Same config. at all nodes ⇒ Regular < Prompt < Reliable
Resource Management Rules

1. Isolated Decisions

2. Resource Correlations

3. Distributed Coordination

Forwarding Queue
Delay regular traffic

Pending Interest Table
Evict regular for prompt

Content Store
Evict regular for reliable

CS—PIT Correlation
Prompt Data meets no PI
⇒ cached with priority

CS—Forward. Correlation
Prompt Data dropped
⇒ cached with priority

PIT Coherence
Same config. at all nodes
⇒ Regular < Reliable < Prompt

CS Efficiency
Same config. at all nodes
⇒ Regular < Prompt < Reliable
Resource Management Rules

1. Isolated Decisions

Forwarding Queue
Delay *regular* traffic

Pending Interest Table
Evict *regular* for *prompt*

Content Store
Evict *regular* for *reliable*

2. Resource Correlations

CS—PIT Correlation
Prompt Data meets no PI
⇒ cached with priority

CS—Forward. Correlation
Prompt Data dropped
⇒ cached with priority

3. Distributed Coordination

PIT Coherence
Same config. at all nodes
⇒ *Regular* < *Reliable* < *Prompt*

CS Efficiency
Same config. at all nodes
⇒ *Regular* < *Prompt* < *Reliable*
Next Steps

- Investigate more correlations between resources
- Examine risk of resource starvation
- Elaborate on distribution and maintenance of flow classes and service levels