

IRTF Network Management Research Group 55th meeting

Introducing FlexNGIA: A Flexible Internet Architecture for the Next-Generation Tactile Internet

Mohamed Faten Zhani

École de technologie supérieure (ÉTS Montreal) Canada

Montreal, Canada, 27 July 2019

- A Glance into the Future
- Limitations of Today's Internet
- FlexNGIA: Fully-Flexible Next-Generation Internet Architecture
- Use cases/intent
- Conclusion

M. F. Zhani, H. ElBakoury, "FlexNGIA: A Flexible Internet Architecture for the Next-Generation Tactile Internet," ArXiV 1905.07137, May 17, 2019 https://arxiv.org/abs/1905.07137

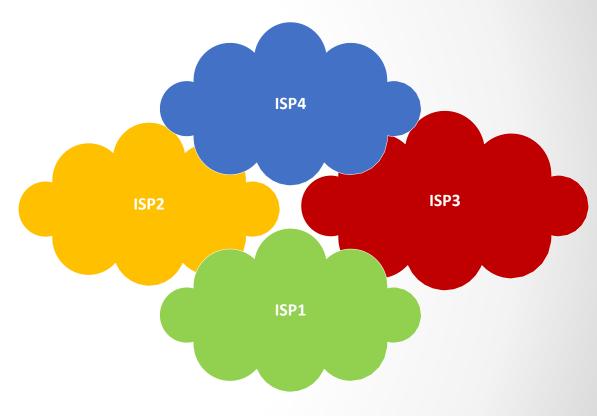
Requirements & Characteristics

- Future Applications: Telepresence, VR/AR, Holoportation
- Requirements:
 - High processing power: real-time processing
 - o High bandwidth (e.g., VR (16K, 240 fps) → 31.85 Gbps)
 - o Ultra-low Latency: 1ms to 20ms
 - Multi-flow synchronization
 - High availability

Requirements & Characteristics

- Octopus-like applications: huge
 number of flows for each application
- Changing requirements : requirements
 can change over time

Outline


- A Glance into the Future
- Limitations of Today's Internet
 - Internet Infrastructure and Services
 - Network Stack Layers and Headers
 - Sources of Latency
- FlexNGIA: Fully-Flexible Next-Generation Internet Architecture
- Use cases/intents
- Conclusion

Example four lindustrie Internet Infrastructure and Services

- A network of networks
- Offered service: "Best effort" data delivery.. no more
- No control over the infrastructure

No control over the end-to-end path and quality of service

→No performance guarantees

M. F. Zhani, H. ElBakoury - FlexNGIA 2019 (https://arxiv.org/abs/1905.07137)

Transport Layer Protocols

Many modern protocols like SCTP and QUIC but let's focus first on TCP..

- One-size-fits-all service offering: TCP offers reliability, data retransmission, congestion and flow control
- Blind Congestion control
- The two end points limitation:
 - High retransmission delays (~ 3x e2e delay)
 - Transport and network layers are not aware which flows belong to the same application

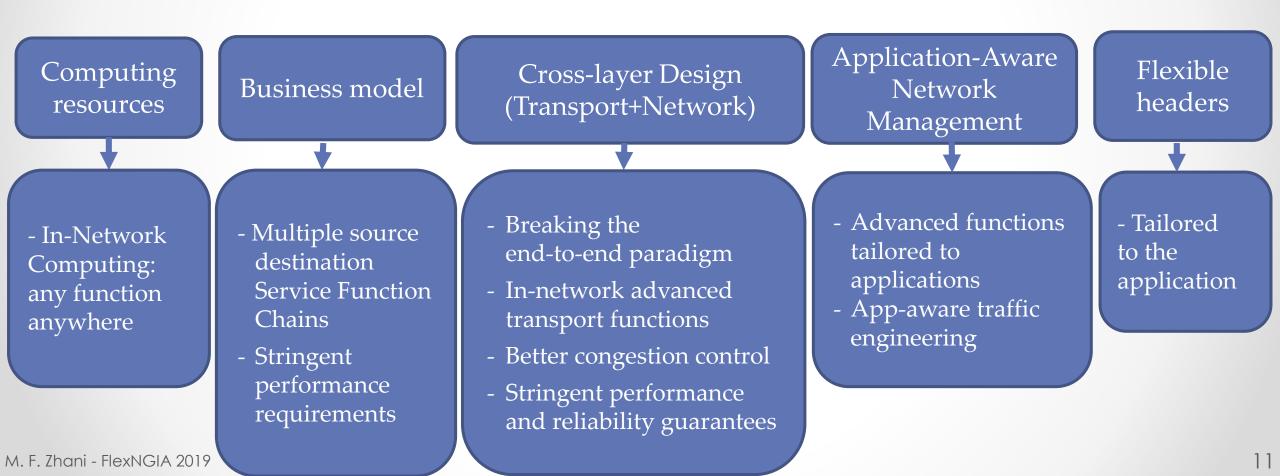
Network Layer Protocols

- Not aware of the applications
 - The application composition (in terms of flows)
 - Performance requirements of each of these flows and how these requirement change over time
 - →Drop packets « blindly »
- No collaboration with the transport layer
 - Do not provide explicit feedback or support to transport layer (maybe ECN is interesting but it is not enough)
 - Do not help with other transport services (e.g., reliability)

Network Stack header

Problems with current headers:

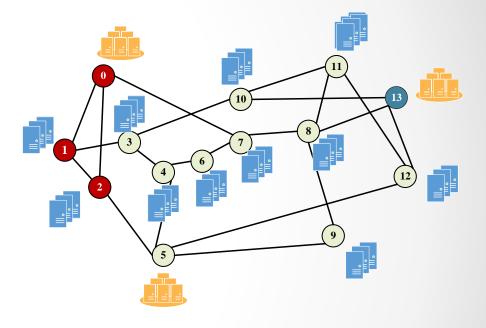
- Do not provide additional informations about objects/sensors, flows belonging to the same application, applications' requirements, etc.
- Not flexible enough: It is not easy to incorporate meta-data and commands


Outline

- A Glance into the Future
- Limitations of Today's Internet
- FlexNGIA: Fully-Flexible Next-Generation Internet Architecture
 - Future Internet Infrastructure and services
 - o Business Model
 - Management Framework
 - Network Protocol Stack/Functions
 - Stack Headers
- Use cases/intents
- Conclusion

FlexNGIA:a Flexible Internet Architecture for the Next-Generation Tactile Internet

FlexNGIA



Future Internet Infrastructure and Services

How a network will look like?

- Computing resources are everywhere: Available at the edge and at the core of the network
- Commodity servers but also dedicated hardware, FPGA, GPU, NPU, etc.
 - → In-Network computing
 - → Reduce steering delay
 - Full Programmability: Any function could be provisioned anywhere (virtual machines/containers)

Cloud Data Center

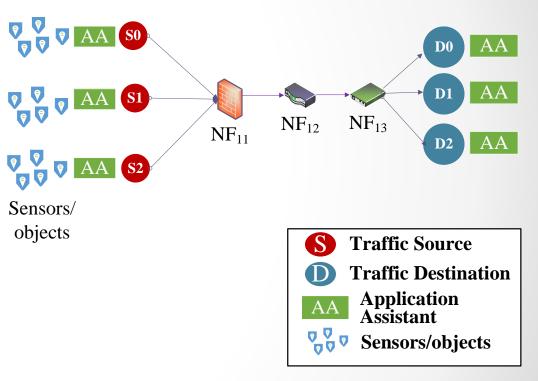
Future Internet Infrastructure and Services

How does Future Internet look like?

- Still a network of networks..
- What is new?

o More services: Service Function chains
 →More advanced functions
 →More than just delivery

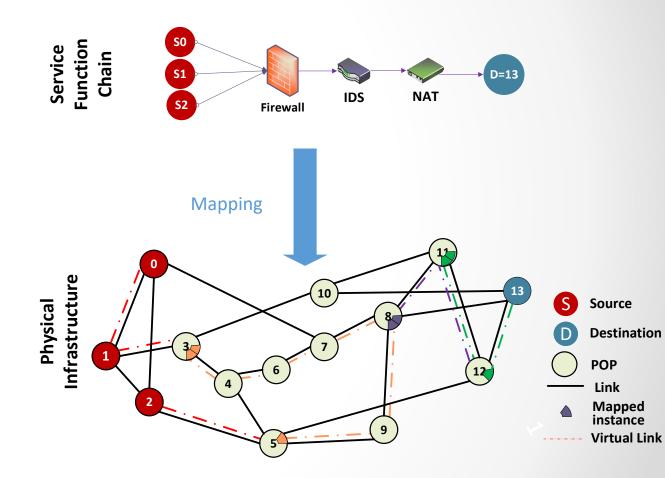
• Stringent performance guarantees



Future Internet Infrastructure and Services

Application-Driven Intent: Service Function Chain (SFC)

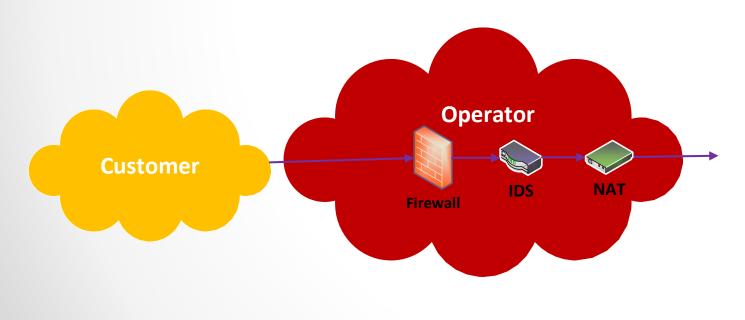
- Multiple connected network functions
- Multiple sources and destinations
- Made out from Network Functions
- Defines, for each network function, the type, software, input/output packet format, expected processing delay, buffer size
- Defines performance requirements (e.g., throughput, packet loss, end-to-end delay, jitter)



Business Model

Network Operators

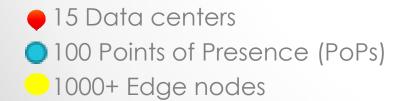
- Own and manage the physical infrastructure (i.e., one network)
- Deploy platforms and software required to run network functions
- The service could be simply data delivery or a SFC
- Provision and manage SFCs



Business Model (cont)

Customers

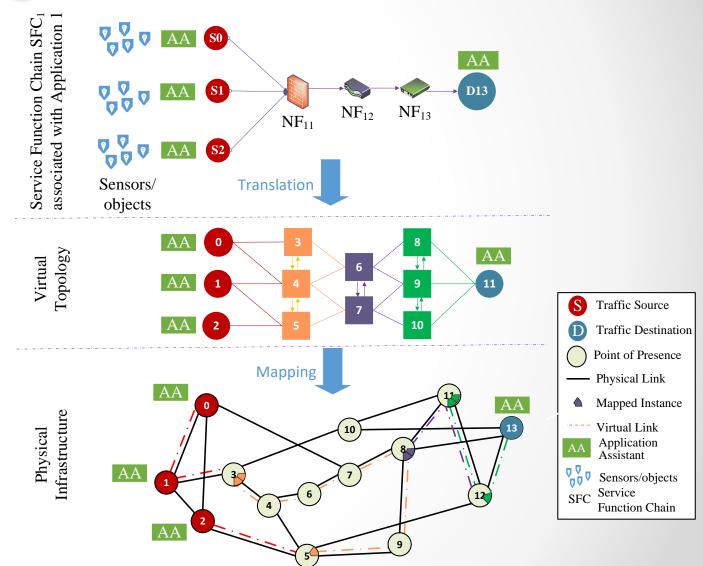
- Could be other network operators, companies or Institutions
- Define the required SFC and Identify the chain sources/destinations
- Rely on the operator to provision and manage the SFC and satisfy SLA


SFC composition

- SLA requirements for the SFC
 - o Bandwidth
 - End-to-end delay
 - o Reliability, availability
- SLA requirements for each NFs
 - Processing power
 - Packet format(s)
 - Packet drop criteria...

Business Model (cont)

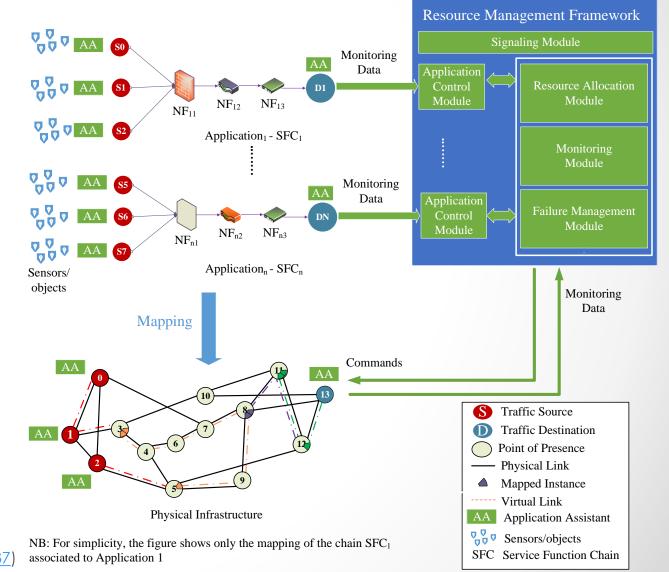
- Example of potential Network Operators:
 - ISPs (e.g., AT&T or Bell Canada) and web-scale companies (e.g., Google, Facebook, Amazon)
 - Example: Google Cloud Platform
 - World wide global Infrastructure
 - Software defined platform
 - Full control over the infrastructure



Source: cloud.google.com

Example four l'industrie Resource Management Framework

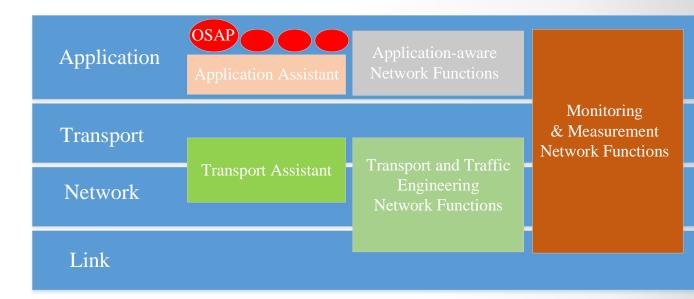
Resource Allocation


- The Service Function Chain (SFC) is defined by the application designer
- 2-step resource allocation:
 - Translation: the SFC is translated into a virtual topology
 - Mapping: virtual topology are mappa

Example for Framework Resource Management Framework

Main components:

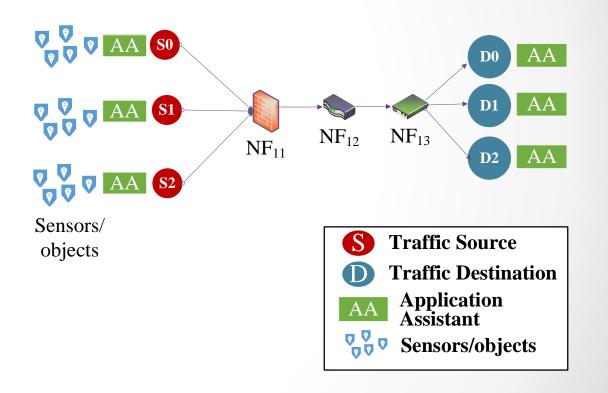
- Signaling module
- Application Control Module
- Ressource allocation Module



M. F. Zhani, H. ElBakoury - FlexNGIA 2019 (https://arxiv.org/abs/1905.07137) as

Network Protocol Stack/Functions

- Basic Network Functions
 (e.g., packet forwarding)
- Advanced Network Functions:
 - Could operate at any layer
 - Only limited by our imagination


- Examples: packet grouping, caching and retransmission, data processing (e.g., image/video cropping, compression, rendering, ML), application-aware flow multiplexing (e.g., incorporating/merging data)
- → Functions could break the end-to-end principle
- →SDN++: SDN should go beyond configuring forwarding rules and should provide the ability to dynamically configure these new functions

Network Protocol Stack/Functions Application Assistant

Application Assistant (AA)

- One AA at each end-point
- Interfaces with objects/sensors
- Measures the application performance
 and user QoE
- Identifies the applications' requirements at run-time
- Adds additional metadata To be used by subsequent Network Functions
- Application-Aware Network Services

Network Protocol Stack/Functions Transport Assistant

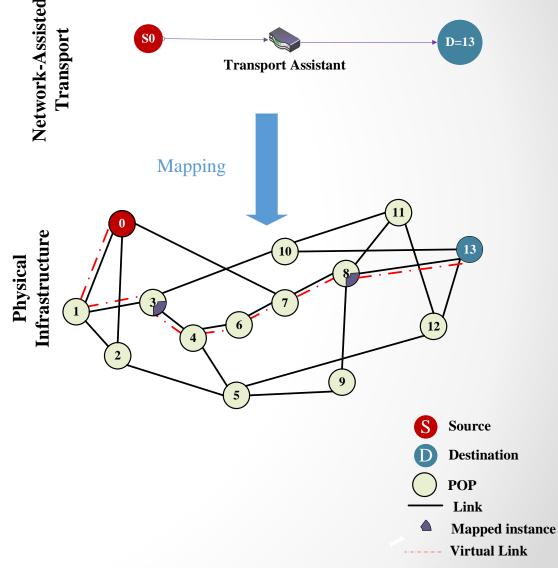
Transport Assistant (TA)

- A cross-layer Network Function
- Combines services of the transport and network layers
- Manages all the flows of the same application
- Implements Transport/Network functions (e.g., congestion control, packet loss detection, packet cache and retransmission, routing)
- One or multiple TA could be provisioned in the same SFC

	Application Layer	
nd	Transport Layer (TCP) - E2E communication - Blind congestion Control - Inaccurate Packet Loss Detection - Guaranteed Reliability - E2E Packet Retransmission Process Network Layer - IP protocol (header and addressing) - Routing Protocols/SDN - ICMP for Control Information - No Advanced Network Functions	 Cross-Layer Transport Multi-point communication Network-assisted congestion control Network-assisted reliability and performance guarantees Accurate packet loss detection Variable performance and reliability Requirements over time Variable Header Meta-data and commands within packet headers Advanced Network Functions
	Link Layer	

Network Stack Headers

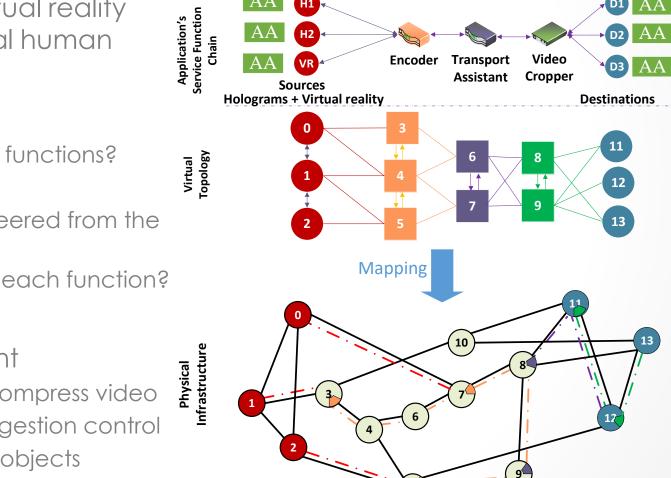
- Signaling packets
 - Instantiate an application
 - Convey application requirements
- Data packets: carry data
 - Layer 2 header: contains mainly the application id used for packet forwarding (similar to VLANs)
 - Upper layers:
 - Fully flexible header format (customizable meta-data and commands)
 - Defined depending on the application
 - Network functions should be aware of the expected format

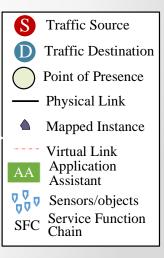


- A Glance into the Future
- Limitations of Today's Internet
- FlexNGIA: Fully-Flexible Next-Generation Internet Architecture
- Use Cases scenarios/intents
- Conclusion

Network-Assisted Data Transport

Goal


- Minimize retransmission delayImproved congestion control
- Solution: service chain with a "transport Assistant" function
- Service of the Transport Assistant:
 - Caching and retransmissting packets
 - Detecting packet loss
 - Congestion control: adjusting rate, dropping packets, compression



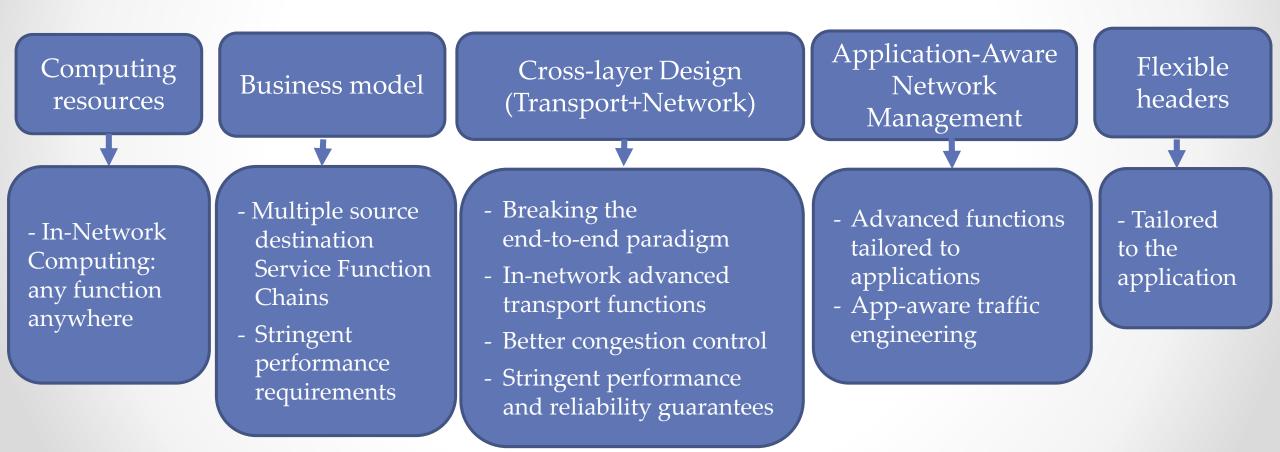
Mixed Virtual Reality and Holograms Le génie pour l'industrie

- Users are exploring a virtual reality environment with several human holograms and objects
- Challenges
 - How many intermediate functions?
 - What kind of functions? \bigcirc
 - How the traffic should steered from the flow sources?
 - How many instances for each function?
 - Where to place them? \bigcirc
- Example of deployement
 - Encoder: encode and compress video
 - Transport manager: congestion control 0
 - Video cropper: crop 3D objects 0

H1

AA

D1)



- A Glance into the Future
- Limitations of Today's Internet
- FlexNGIA: Fully-Flexible Next-Generation Internet
 Architecture
- Use Cases
- Conclusion

FlexNGIA

Looking for More Details?

 M. F. Zhani, H. ElBakoury, "FlexNGIA: A Flexible Internet Architecture for the Next-Generation Tactile Internet," ArXiV 1905.07137, May 17, 2019 <u>https://arxiv.org/abs/1905.07137</u>

Thank You

Questions

