
Towards Self-Driving Networks:
AI-enabled network management

Abdelkader LAHMADI
abdelkader.lahmadi@loria.fr

Project-Team RESIST
Inria Nancy Grand Est

NMRG meeting, 01/07/2019

mailto:Abdelkader.lahmadi@loria.fr

Self-Driving Technology: a reality

1

Waymo Safety Report On The Road to Fully Self-Driving 4

Waymo’s Safety Report also addresses the U.S. Department of Transportation
(DOT) federal policy framework for autonomous vehicles: Automated Driving
Systems 2.0: A Vision for Safety. The DOT framework outlines 12 safety design
elements, and encourages companies testing and deploying self-driving
systems to address each of these areas. Over the course of our Report,
we will outline the processes relevant to each safety design element and
how they underpin the development, testing, and deployment of fully
self-driving vehicles.

Fully self-driving vehicles will succeed in their promise and gain public
acceptance only if they are safe. That’s why Waymo has been investing
in safety and building the processes that give us the confidence that our
self-driving vehicles can serve the public’s need for safer transportation
and better mobility.

In Movies:

In Real World:
Total Recall (1990)

Google car (2014)

How self-driving car work ?

2

• Perception
–Detect and classify objects on the road
– Estimate speed, heading, acceleration over

time
• Behaviour prediction
–Predict and understand the intent of each

object in the road
• Planner
–Make decisions: turn left, right, slow down, etc.

How self-driving car work ?

3Waymo company, “Waymo Safety report: on the road to fully Self-Driving”, 2018

Where am I ?

What’s around me ?
What will happen next ?

What should I do ?

How to build a self-driving car ?
• Get a safe driving model from human drivers

• Integrate a lot of sensors, computing and
networking capabilities in the car

• Apply ML and AI techniques

• Train and test until the car drives safely

–Waymo cars : 4 million miles of driving, 2.5
billion simulated miles

4

Vinton G. Cerf, « A Comprehensive Self-Driving Car Test», Communications of the ACM, February 2018

How to build a safe self-driving car?

• Build verifiable software and systems
• Encrypt and verify channels of communications
• Build redundant security measures for critical

systems
• Limit communication between critical system
• Provide timely software updates
• Model and prioritize threats

5Waymo company, “Waymo Safety report: on the road to fully Self-Driving”, 2018

From cars to networks

6

Waymo Safety Report On The Road to Fully Self-Driving 4

Waymo’s Safety Report also addresses the U.S. Department of Transportation
(DOT) federal policy framework for autonomous vehicles: Automated Driving
Systems 2.0: A Vision for Safety. The DOT framework outlines 12 safety design
elements, and encourages companies testing and deploying self-driving
systems to address each of these areas. Over the course of our Report,
we will outline the processes relevant to each safety design element and
how they underpin the development, testing, and deployment of fully
self-driving vehicles.

Fully self-driving vehicles will succeed in their promise and gain public
acceptance only if they are safe. That’s why Waymo has been investing
in safety and building the processes that give us the confidence that our
self-driving vehicles can serve the public’s need for safer transportation
and better mobility.

4 wheels, gears, motors,
and more

Switches, routers, links, and
devices

• Real-time monitoring
• Softwarisation
• Automation
• Personalised services

How to build self-driving networks ?

• Get a safe model of a modern network
from human operators
• Integrate a lot of probes, and management

capabilities
• Apply ML and AI techniques
• Train and test until it works safely

7

Difficult to have, oftenly does not exist
Lot of human effort to maintain performance and security

Jeff Mogul, “Unsafe at Any Speed? Self-Driving Networks without Self-Crashing Networks”, 2018

Self-Driving Networks

8

Why (and How) Networks Should Run Themselves

Nick Feamster and Jennifer Rexford

Princeton University

Abstract
The proliferation of networked devices, systems, and appli-
cations that we depend on every day makes managing net-
works more important than ever. The increasing security,
availability, and performance demands of these applications
suggest that these increasingly difficult network management
problems be solved in real time, across a complex web of
interacting protocols and systems. Alas, just as the impor-
tance of network management has increased, the network
has grown so complex that it is seemingly unmanageable. In
this new era, network management requires a fundamentally
new approach. Instead of optimizations based on closed-form
analysis of individual protocols, network operators need data-
driven, machine-learning-based models of end-to-end and
application performance based on high-level policy goals and
a holistic view of the underlying components. Instead of
anomaly detection algorithms that operate on offline analysis
of network traces, operators need classification and detec-
tion algorithms that can make real-time, closed-loop deci-
sions. Networks should learn to drive themselves. This paper
explores this concept, discussing how we might attain this
ambitious goal by more closely coupling measurement with
real-time control and by relying on learning for inference
and prediction about a networked application or system, as
opposed to closed-form analysis of individual protocols.

1 Introduction
Modern networked applications operate at a scale and scope
we have never seen before. Virtual and augmented reality
require real-time responsiveness, micro-services deployed
using containers introduce rapid changes in traffic workloads,
and the Internet of Things (IoT) significantly increases the
number of connected devices while also raising new security
and privacy concerns. The widespread integration of these
applications into our daily lives raises the bar for network
management, as users elevate their expectations for real-time
interaction, high availability, resilience to attack, ubiquitous
access, and scale. Network management has always been a
worthwhile endeavor, but now it is mission critical.

Yet, network management has remained a Sisyphean task.
Network operators develop and use scripts and tools to help
them plan, troubleshoot, and secure their networks, as user de-
mands and network complexity continue to grow. Networking
researchers strive to improve the tuning, design, and measure-
ment of network protocols, yet we continue to fall behind
the curve, as the protocols, variable network conditions, and

relationships between them and user quality of experience be-
come increasingly complex. Twenty years ago, we had some
hope of (and success in) creating clean, closed-form mod-
els of individual protocols, applications, and systems [4, 24];
today, many of these are too complicated for closed-form anal-
ysis. Prediction problems such as determining how search
query response time would vary in response to the placement
of a cache are much more suited to statistical inference and
machine learning based on measurement data [29].

Of course, we must change the network to make network
management easier. We have been saying this for years, as we
continue to fall behind the curve. Part of the problem, we be-
lieve, is the continued focus on designing, understanding, and
tweaking individual protocols—we focus on better models
for BGP, optimizations for TCP, QUIC, DNS, or the protocols
du jour. In fact, our troubles do not lie in the protocols. The
inability to model holistic network systems, as opposed to
individual protocols, has made it difficult for operators to un-
derstand what is happening in the network. Software-Defined
Networking (SDN) helps by offering greater programmability
and centralized control, yet controller applications still rely
on collecting their own data and installing low-level match-
action rules in switches and SDN does not change the fact
that real networked systems are too complex to analyze with
closed-form models.

As networking researchers, we must change our approach
to these problems. An ambitious goal for network manage-
ment is that of a self-driving network—one where (1) net-
work measurement is task-driven and tightly integrated with
the control of the network; and (2) network control relies
on learning and large-scale data analytics of the entire net-
worked system, as opposed to closed-form models of individ-
ual protocols. Recent initiatives have proffered this high-level
goal [14, 28], drawing an analogy to self-driving cars, which
can make decisions that manage uncertainty and mitigate risk
to achieve some task (e.g., transportation to some destination).
This paper explores this goal in detail, developing the techni-
cal requirements for and properties of a self-driving network
and outlining a broad, cross-disciplinary research agenda for
the community that can move us closer to realizing this goal.

The networking research community has been developing
the pieces of this puzzle for many years, from predictive mod-
els of application performance [19, 29] to statistical anomaly
and intrusion detection algorithms based on analysis of net-
work traffic [2, 7]. The state of the art, however, merely
lays the foundation for the much more ambitious agenda of

1

ar
X

iv
:1

71
0.

11
58

3v
1

 [c
s.N

I]
 3

1
O

ct
 2

01
7

N. Feamster and J. Rexford, “Why (and How) Networks Should Run Themselves,” CoRR, vol. abs/1710.11583, 2017.

A more pragmatic approach
• Deriving measurement, inference, and control from

high-level policy
– High-level goal (performance, security) => (measurement,

inference, decisions)
• Performing automated, real-time inference
– Improve network management through learning
– Quality of data

• Operating scalably in the data plane: Need for Speed
– Fully programmable protocol-independent data plane:

dedicated hardware platforms, programming languages
(P4)

– In-band measurement: distributed streaming analytics

9N. Feamster and J. Rexford, “Why (and How) Networks Should Run Themselves,”, 2017.

Self-driving networks: the process

10

IEEE Communications Magazine • January 2018160

ed mitigation to minimize downtime and human
intervention.

Configuration Management: Operators must
implement increasingly sophisticated network pol-
icies that have to be translated into constrained
low-level configuration commands, and adjusted
to changes in network conditions (e.g., intrusions,
traffic shifts, performance degradation). As the
network state is constantly changing, network
managers find themselves constantly configuring
the network to adapt to these changes, which is
a cumbersome and error-prone process. ML can
help automate this process by training models to
identify optimal state-action pairs as the network
behavior changes over time. A handful of works
have showcased the benefits of ML for dynamic
resource allocation and service configuration.

Accounting Management: Accounting is
tightly coupled with business and control mod-
els. These models leverage accounting data in

decision making, service planning, and delivery,
and designing tariffs and pricing plans. Therefore,
it is essential to ensure the integrity of account-
ing data by accurate collection of usage data
and fraud detection. The use of ML for network
accounting management is rather unexplored.

Performance Management: Today’s networks
typically run a variety of services with different
performance requirements to serve an increas-
ing number of users with distinct profiles. Guar-
anteeing performance is a daunting task. In fact,
without the ability to accurately predict network
behavior, how can we provide such guarantees?
This realization has attracted numerous efforts
that have leveraged ML for performance and
traffic load prediction, and quality of experience/
service (QoE/QoS) correlation for proactive and
adaptive network performance management [11].

Security Management: The most common-
ly employed security approach consists of mon-
itoring the network for patterns of well-known
threats. However, this renders the network vul-
nerable to zero-day attacks. This vulnerability is
critical as new attacks emerge daily [12]. The
need for robust security measures is clear, and the
role of ML toward this end has been investigated
extensively [13]. Existing efforts have concentrat-
ed on using ML for misuse detection in order to
learn complex attack patterns from historical data
and generate generic rules that allow detecting
variations of known attacks. Anomaly detection
using ML has also been explored to detect zero-
day attacks. This consists of learning patterns of
normal behavior and detecting deviations from
the norm.

The aforementioned efforts show promising
results toward incorporating cognition in network
management. However, leveraging ML for the dif-
ferent network management functions alone will
not fulfill the vision of cognitive management. In
fact, there is a need for a cognitive control loop,
detailed below.

C-MAPE: A COGNITIVE CONTROL LOOP
To date, IBM’s architecture for autonomic com-
puting [2] is the most influential reference model
for autonomic systems and networks. It comprises
several layers of autonomic managers. The behav-
ior of each manager is governed by the MAPE
control loop that consists of four functions: mon-
itor, analyze, plan, and execute. As shown in Fig.
2, the knowledge source is orthogonal to every
MAPE function. Functions can retrieve data from
and/or log created knowledge to the knowledge
source. For example, the analyze function obtains
information about the historical behavior of a
managed resource and stores the ML models and
the analytics it generates in the knowledge source.

In [2], we observe that cognition has been
restricted to the analyze function, which inhibits
the ability to achieve closed-loop cognitive net-
work management. In this article, we propose
to incorporate cognition at every function in the
loop. For example, the monitor function should
be able to determine what, when, and where to
monitor. ML can be leveraged to build this cog-
nition in every function and allow each function
to operate in full autonomy. Therefore, we extend
IBM’s MAPE control loop into a cognitive con-
trol loop we call C-MAPE. As illustrated in Fig. 2,

Table 1. Sample machine learning techniques used in FCAPS.

Management area Management function Machine learning techniques

Fault

Fault prediction NN, k-NN, k-Means, DT, BN, SVM

Fault localization NN, k-NN, k-Means, DT

Automated mitigation BN, SVM

Configuration
Adaptive resource allocation Q-Learning, Deep

Adaptive service configuration Q-Learning

Accounting — —

Performance
Traffic load and metrics prediction (Ensemble) NN, BN, SVM,

QoE-QoS correlation DT, BN, SVM, Q-learning

Security

Misuse detection NN, DT, BN, SVM

Anomaly detection
(Ensemble) NN, DNN, k-NN, k-means,
(Ensemble) DT, Ensemble BN, SVM

Figure 2. Cognitive control loop for network management.

C-Analyze

C-Analyze

C-Monitor C-Execute

C-Plan

Knowledge

Analytics

Labels

PlanData

Models

Analytics
Infer

Evaluate

Validation
datasetTraining

dataset

Data

Split

Extract
features

Select
model

Process

Learn
Features of

interest

Ayoubi et al, « Machine learning for cognitive network Management », IEEE Communication Magazine, January 2018.

From SDN to SDN

11

Service requirements:
Intents

Telemetry:
measure

Automation:
control

Analyze

Software Defined Networks Self-Driving Networks

SDN reference architecture: www.opennetworking.org

Refining network intents
• Network intents: high level policy goals

12

MeasureControl

Analyze
LearnProcess

Network

Operator
Intent

Jacobs et al, “Refining Network Intents for Self-Driving Networks”, SIGCOMM Workshop Self-Driving Networks, 2018

Refining network intents

13Jacobs et al, “Refining Network Intents for Self-Driving Networks”, SIGCOMM Workshop Self-Driving Networks, 2018

Say what you want

Refining network intents

14Jacobs et al, “Refining Network Intents for Self-Driving Networks”, SIGCOMM Workshop Self-Driving Networks, 2018

Learning IP network embedding
• Estimate network structure

15Li et al, “Deep Learning IP network representations”, SIGCOMM workshop Big-DAMA, 2018

Deep Learning IP Network Representations Big-DAMA’18, August 20, 2018, Budapest, Hungary

Figure 1: Cumulative distribution of (left) hop counts between pairs of host-server IPs that share the �rst, �rst two, or �rst
three bytes, and (right) standard deviation of hop count distribution among groups of IPs sharing the �rst, �rst two, or �rst
three bytes. The more similar two IPs are, the closer they are and the more similar their distances to the same third IP are.

for embedding, we can identify and use hidden features encoded in
the IP address of a given node. We perform several transformations
on the input, guided by observations on real network data.

IP normalization. Because the routable information is tied to
an IP address, we combine the IP and pre�x values when feeding
them to the neural network. To keep the size of the input constant
and independent on the pre�x size, we generate a normalized IP
address for each regular IP. The process of normalization is depicted
in Figure 2. We divide each IP into the network and the host parts.
We pad the end of the network part and the beginning of the host
part with zero to obtain two four-byte values. We concatenate the
values and get the eight bytes normalized IP. Further, for easier
processing, we represent each byte of the input in one-hot vector
format (256 dimensions), e.g., a one and the rest are 0s, where the
1’s position is the value of the byte (0 to 255).

Sequential feeding. IP addresses are assigned hierarchically
and encode structural information of the network. To better under-
stand how the hierarchical assignment a�ects node clustering, we
perform two experiments on a data set of hop counts between 95
geographically distributed servers and ten million IP addresses of
end hosts. Section 4.1 describes the data in more detail.

First, we group all pairs of host-server IPs according to whether
they share (within the pair) the �rst byte, �rst two bytes, or �rst
three bytes. We show the all-to-all hop counts between pairs in
each of the three groups in Figure 1(left). The more similar two
IP addresses are, the closer they are in terms of number of hops.
Second, we group separately hosts and servers according to whether
they share the �rst one, two, or three bytes and generate the hop
count distribution for each pair of host-server groups that share
the same pre�x. We present the standard deviation for each pair
in Figure 1(right). The smaller the standard deviation is, the more
similar the distances are. This means that the more similar two IPs
are, the more likely they have the same hop count to another node.

As shown in Figure 1, an IP address can help learn node repre-
sentations that capture the network structure. The more bytes of an
IP address we know, the better we can constrain the representation

192.168.133.130/20 = 11000000.10101000.1000 0101.10000010
network (20b) host (12b)

11000000.10101000.10000000.00000000.00000000.00000000.00000101.10000010
normalized network (32b) normalized host (32b)

B0 B1 B2 B3 B4 B5 B6 B7

Figure 2: Generating a normalized IP address for
192.168.133.130/20.

we assign to it. In addition, the more signi�cant bytes of an IP
address have a higher in�uence on the position of the associated
host relative to other hosts. Therefore, the key is to capture the
sequential correlation among the bytes of an IP address.

3.3 Network construction
Driven by the insight gained in the previous section, we develop

DIP, a deep neural network that computes vector representations
of network hosts based on their IP addresses and the hop counts to
other hosts. The design of DIP, depicted in �gure 3, is similar to that
of a recurrent neural network [16], where new data is processed in
the context provided by previous data (e.g., like processing natural
language). We explain the details below. Even though the �gure
and our explanation refer to the input as one-hot vectors (e.g., a
normalized IP is represented as a vector of size 8x256=2,048), in
reality the inputs are matrices (i.e., the number of IP addresses times
2,048). Because our hop count data (see Section 4.1) is between
separate end-hosts (sources) and servers (destinations) and because
distances in the Internet are not always symmetric, we choose to
feed the source and destination IPs separately in the neural network.

Intermediate IP representation. As mentioned earlier, to get
the most out of the format and value of an IP address towards
building a representative embedding for its host, we should treat
each byte separately. The more signi�cant bytes can provide a
context for how to interpret the less signi�cant bytes. Thus, we

35

Big-DAMA’18, August 20, 2018, Budapest, Hungary M. Li et al.

||rh - rs||2
estimated
hop count

real
hop count

cost

f

B1B0

f

B7

f

host
IP
representation

f

B1B0

f

B7

f

server
IP
representation

||D - D||2

rh

rs

D̂

D

normalized source (host) IP addresses

normalized destination (server) IP addresses real hop count matrix

f Neurons

^

Intermediate vector
Input vector

||….||

Bi Byte i of normalized IP address
(in one-hot vector format)

la
ye

r 0

la
ye

r 1

la
ye

r 7

la
ye

r 8

la
ye

r 9

Figure 3: The neural network used for training our embeddingmodel. The�rst eight layers receive the normalized IP addresses
as input and compute the IP representations. The ninth layer estimates the hop count between two IP addresses and the tenth
layer measures the model error. Elements in red are input. For simplicity we depict the input as one-dimensional vectors (one
normalized IP); in reality, all inputs are matrices.

choose to input each byte of the normalized IP (a 256-dimension
one-hot vector Bi 2{0, ...,7}256⇥1) separately at each layer of the network.
The input of layer i is the concatenation of byte i with the output
of the previous layer (except for the �rst layer). This

Input =

(
i = 0 Bi=0256⇥1
i 2 {1, ..., 7} concat(f i�1d⇥1,B

i
256⇥1)

(1)

where d is the dimension of the �nal IP representation and concat
represents the vector concatenation operation.

At each layer, the activation function f is given by:

f i =

8>>>>>><
>>>>>>:

i = 0 so f tsi�n(wi=0
d⇥256 ⇥ Bi=0256⇥1 + b

i=0
d⇥1)

i 2 {1, ..., 7}
so f tsi�n(wi 2{1, ...,7}

d⇥(256+d) ⇥

concat(Bi 2{1, ...,7}256⇥1 , f i�1d⇥1)+b
i 2{1, ...,7}
d⇥1)

(2)

wherewi 2{0, ...,7}
d⇥(256+d) are weights and bi 2{0, ...,7}d⇥1) are biases; the soft-

sign function is f (x) = 1
1+ |x | . Initially, we assign random values to

all weights and zeros to all biases. We employ softsign as the activa-
tion function for the ease of training, as softsign is more robust to
saturation compared to other popular activation functions, such as
sigmoid and tanh.

Intermediate distance estimation. We use the �rst eight lay-
ers of the neural network to process each of the eight bytes of the
input normalized IP address. The output of the eighth layer is the
intermediate vector representation for each IP address in the input
data. We then use the last two layers to estimate how good the
representation is. First we compute the estimated hop counts given
by the current representation using an Euclidean distance. Given
two matrices Hh⇥d and Ss⇥d storing the intermediate representa-
tions for the h hosts and s servers separately, the estimated distance
matrix is:

Disth⇥s = Euclidean(Hh⇥d , Ss⇥d) (3)

Error reduction. Finally, we compare the estimated hop counts
with the real hop counts matrix Dh⇥s to compute the cost as the
mean di�erence of hop-counts. As the real hop count matrix is
sparse, we compare only the valid entries:

Cost =

Õh
i=1

Õs
j=1W

(i, j)(| |rHi2{1, . .,h}
d⇥1 � r

Sj2{1, . .,s }
d⇥1 | | � D(i, j))

count o f non � zero D(i, j) (4)

D(i, j) represents the value of the element at ith row and jth column
in matrixD. rHi2{1, . .,h}

d⇥1 and rSj2{1, . .,s }d⇥1 are rows in the matricesHh⇥d
and Ss⇥d , and correspond to the representation of a host or server
in the embedding space.W is a binary (0-1) matrix whose elements

36

f: Softsign
activation
function
1/(1+|x|)

Automated generation of verifiable
security function chains

16

Automated generation of verifiable
security function chains
• Inference using logic programming

17

Examples of inference rules

Rules for inferring elementary actions

deploy

block

(a, pt) botnet(a, pt)

deploy

forward

(a) ¬worm(a, pt) ^ ¬botnet(a, pt)

Rules for inferring security functions to deploy

stateless_firewall(t) =

�+{ forward(a, t) : deploy

forward

(a), a 2 Addr }
�+ �+{ block(a, pt, t) : deploy

block

(a, pt), a 2 Addr, pt 2 Port }

Rules for inferring compositions paths

dos_chain = stateless_firewall �� ids �� stateful_firewall

16 / 24

Example of a simple chain of security functions

Logical statement

stateless_firewall(t) = forward(169 .45 .223 .16 , t) �+ forward(169 .45 .223 .20 , t) �+ . . .

dpi(t) = inspect(169 .45 .223 .16 , t) �+ inspect(169 .45 .223 .20 , t) �+ . . .

chain(t) = [stateless_firewall(t), dpi(t)]

Corresponding Pyretic program

stateless_firewall = match(dstip = 169 .45 .223 .16) + match(dstip = 169 .45 .223 .20) . . .

dpi = InspectQuery(169 .45 .223 .16) + InspectQuery(169 .45 .223 .20) + . . .

chain = stateless_firewall � dpi

18 / 24

Example

N. Schnepf et al, “Rule-Based Synthesis of Chains of Security Functions for Software-Defined Networks ”, AVOCS, 2018

Extracting attack patterns

18

Separating patterns

Mapper parameters

I 1000 packets with ✏ = 0.5 and minpts=3 and
overlap = 10%

Extracted patterns

I large green dot: scanning activity on port 53413
(known exploit)

I red component: probing Telnet and SSH accesses

I orange component: sparse scans

I yellow component: two randomized scans and
some noise

16/57

Separating patterns

Mapper parameters

I 1000 packets with ✏ = 0.5 and minpts=3 and
overlap = 10%

Extracted patterns

I large green dot: scanning activity on port 53413
(known exploit)

I red component: probing Telnet and SSH accesses

I orange component: sparse scans

I yellow component: two randomized scans and
some noise

16/57

Mapper
algorithm

Extracting scanning activities

I 8000 packets, ✏ = 0.05 and minpts=20,
overlap=5%

I Parameters estimation: trial-and-error
method, but remains stable when found

I Suricata 3.0 detects only 4 scanning
activities: grouping packets

17/57

Visualization

Marc Coudriau, Abdelkader Lahmadi, Jérôme François, "Topological Analysis and Visualisation of Network Monitoring Data: Darknet case study", 8th
IEEE International Workshop on Information Forensics and Security, WIFS, 2016

TDA Mapper algorithm

Summary and outlook
• Self-driving networks: challenges

– You can’t build a self-driving Citroën 2 CV

• Enabled by network programmability and

virtualisation: SDN, NVF, P4, …

• Enabled by ML and AI based networking: data-driven

models

• How to place the human in the loop of self-driving

networks?

• Accountability

– How to test self-driving networks?

• 2.5 billion simulated miles during the course of self-driving car

development

• Crash tests

19

