Towards Self-Driving Networks:
Al-enabled network management

Abdelkader LAHMADI
abdelkader.lahmadi@loria.fr

NMRG meeting, 01/07/2019

Project-Team RESIST - ,
. Informatics g”mathematics SUSI P
Inria Nancy Grand Est &z'ﬂa/- : ;LO(IQ . @ E foreE e

mailto:Abdelkader.lahmadi@loria.fr

Self-Driving Technology: a reality

In Movies:

Total Recall (1990)
In Real World:

- Google car (2014)

How self-driving car work ?

* Perception

— Detect and classify objects on the road

— Estimate speed, heading, acceleration over
time

* Behaviour prediction

—Predict and understand the intent of each
object in the road

* Planner
—Make decisions: turn left, right, slow down, etc.

How seIf—drlvmg car work ?

Where am | 2

~ —
3 —
Y —

Sl &

T Supplemental Sensors Vision System

A

. - -—

LiDAR System Radar System

How to build a self-driving car ?

* Get a safe driving model from human drivers

* Integrate a lot of sensors, computing and
networking capabilities in the car

* Apply ML and Al techniques
* Train and test until the car drives safely

—Waymo cars : 4 million miles of driving, 2.5
billion simulated miles

Vinton G. Cerf, « A Comprehensive Self-Driving Car Test», Communications of the ACM, February 2018

How to build a safe self-driving car?

* Build verifiable software and systems
* Encrypt and verify channels of communications

* Build redundant security measures for critical
systems

* Limit communication between critical system

* Provide timely software updates
* Model and prioritize threats

From cars to networks

4 wheels, gears, motors, Switches, routers, links, and
and more devices

—

"« Real-time monitoring A

e Softwarisation
e Automation
_* Personalised services J

How to build self-driving networks ?

Difficult to have, oftenly does not exist
/ Lot of human effort to maintain performance and security

* Get a safe model of a modern network
from human operators

* Integrate a lot of probes, and management
capabilities

* Apply ML and Al techniques
* Train and test until it works safely

e
»

1710.11583v1 [cs.NI] 31 Oct 2017

arxiv

Self-Driving Networks

Why (and How) Networks Should Run Themselves

Nick Feamster and Jennifer Rexford
Princeton University

Abstract

The proliferation of networked devices, systems, and appli-
cations that we depend on every day makes managing net-
works more important than ever. The increasing security,
availability, and performance demands of these applications
suggest that these increasingly difficult network management
problems be solved in real time, across a complex web of
interacting protocols and systems. Alas, just as the impor-
tance of network management has increased, the network
has grown so complex that it is seemingly unmanageable. In
this new era, network management requires a fundamentally
new approach. Instead of optimizations based on closed-form
analysis of individual protocols, network operators need data-
driven, machine-learning-based models of end-to-end and
application performance based on high-level policy goals and
a holistic view of the underlying components. Instead of
anomaly detection algorithms that operate on offline analysis
of network traces, operators need classification and detec-
tion algorithms that can make real-time, closed-loop deci-
sions. Networks should learn to drive themselves. This paper
explores this concept, discussing how we might attain this
ambitious goal by more closely coupling measurement with
real-time control and by relying on learning for inference
and prediction about a networked application or system, as
opposed to closed-form analysis of individual protocols.

1 Introduction

Modern networked applications operate at a scale and scope
we have never seen before. Virtual and augmented reality
require real-time responsiveness, micro-services deployed
using containers introduce rapid changes in traffic workloads,
and the Internet of Things (IoT) significantly increases the
number of connected devices while also raising new security
and privacy concerns. The widespread integration of these
applications into our daily lives raises the bar for network
management, as users elevate their expectations for real-time
interaction, high availability, resilience to attack, ubiquitous
access, and scale. Network management has always been a
worthwhile endeavor, but now it is mission critical.

Yet, network management has remained a Sisyphean task.
Network operators develop and use scripts and tools to help
them plan, troubleshoot, and secure their networks, as user de-
mands and network complexity continue to grow. Networking
researchers strive to improve the tuning, design, and measure-
ment of network protocols, yet we continue to fall behind
the curve, as the protocols, variable network conditions, and

relationships between them and user quality of experience be-
come increasingly complex. Twenty years ago, we had some
hope of (and success in) creating clean, closed-form mod-
els of individual protocols, applications, and systems [4,24];
today, many of these are too complicated for closed-form anal-
ysis. Prediction problems such as determining how search
query response time would vary in response to the placement
of a cache are much more suited to statistical inference and
machine learning based on measurement data [29].

Of course, we must change the network to make network
management easier. We have been saying this for years, as we
continue to fall behind the curve. Part of the problem, we be-
lieve, is the continued focus on designing, understanding, and
tweaking individual protocols—we focus on better models
for BGP, optimizations for TCP, QUIC, DNS, or the protocols
du jour. In fact, our troubles do not lie in the protocols. The
inability to model holistic network systems, as opposed to
individual protocols, has made it difficult for operators to un-
derstand what is happening in the network. Software-Defined
Networking (SDN) helps by offering greater programmability
and centralized control, yet controller applications still rely
on collecting their own data and installing low-level match-
action rules in switches and SDN does not change the fact
that real networked systems are too complex to analyze with
closed-form models.

As networking researchers, we must change our approach
to these problems. An ambitious goal for network manage-
ment is that of a self-driving network—one where (1) net-
work measurement is task-driven and tightly integrated with
the control of the network; and (2) network control relies
on learning and large-scale data analytics of the entire net-
worked system, as opposed to closed-form models of individ-
ual protocols. Recent initiatives have proffered this high-level
goal [14,28], drawing an analogy to self-driving cars, which
can make decisions that manage uncertainty and mitigate risk
to achieve some task (e.g., transportation to some destination).
This paper explores this goal in detail, developing the techni-
cal requirements for and properties of a self-driving network
and outlining a broad, cross-disciplinary research agenda for
the community that can move us closer to realizing this goal.

The networking research community has been developing
the pieces of this puzzle for many years, from predictive mod-
els of application performance [19,29] to statistical anomaly
and intrusion detection algorithms based on analysis of net-
work traffic [2,7]. The state of the art, however, merely
lays the foundation for the much more ambitious agenda of

Abstract

The proliferation of networked devices, systems, and appli-
cations that we depend on every day makes managing net-
works more important than ever. The increasing security.
availability, and performance demands of these applications
suggest that these increasingly difficult network management
problems be solved in real time, across a complex web of
interacting protocols and systems. Alas, just as the impor-
tance of network management has increased, the network
has grown so complex that it is seemingly unmanageable. In
this new era, network management requires a fundamentally
new approach. Instead of optimizations based on closed-form
analysis of individual protocols, network operators need data-
driven, machine-learning-based models of end-to-end and
application performance based on high-level policy goals and
a holistic view of the underlying components. Instead of
anomaly detection algorithms that operate on offline analysis
of network traces, operators need classification and detec-
tion algorithms that can make real-time, closed-loop deci-
sions. Networks should learn to drive themselves. This paper
explores this concept, discussing how we might attain this
ambitious goal by more closely coupling measurement with
real-time control and by relying on leaming for inference
and prediction about a networked application or system, as
opposed to closed-form analysis of individual protocols.

A more pragmatic approach

* Deriving measurement, inference, and control from
high-level policy
— High-level goal (performance, security) => (measurement,
inference, decisions)

* Performing automated, real-time inference
— Improve network management through learning
— Quality of data
* Operating scalably in the data plane: Need for Speed

— Fully programmable protocol-independent data plane:
dedicated hardware platforms, programming languages
(P4)

— In-band measurement: distributed streaming analytics

Self-driving networks: the process

C-Analyze

Process » Infer [, ||
) __ Analytics

Features of Select @
Interest i

model Models |

Extract
[features] [Evaluate J

=

.
.
.
.
A
.
.
Data ‘
.
.
.
.
.
.

- B \aidion
rainin !
: Analytics datase% dataset |
Data Plan
C-Analyze -Plan

|

C-Monitor)~ ¥ C-Execut

. '
.
S '
. '
. '
.]
. '
.
. '
. '
A]
. i
. '
.
. '
. '
.
N '
N '
. '
== .
4]
.- . '
Sea -~
. o '
Seea s
.. o
- S
Labels ’

From SDN to SDN
/ \

Software Defined Networks Self-Driving Networks

APPLICATION LAYER l

Business Applications

Service requirements:
Intents

API API

CONTROL LAYER

a
SDN]
) Control \
Automation: Software Network Services

control

Telemetry:
measure

Control Data Plane interface
(e.g., OpenFlow)

INFRASTRUCTURE LAYER

Network Device Network Device
Network Device

Network Device
Network Device

SDN reference architecture: www.opennetworking.org

Refining network intents

* Network intents: high level policy goals

Operator

Intent Analyze

) [Process _ Learn

Control
Network

Measure

Refining network intents

Say what you want

!

“Please add a firewall and an IDS
from Iperf client to server”

Intent
Extracted entities ranslato

NS

Neural Sequence to Sequence learning model,
using Recursive Neural Networks.

Refining network intents

deploy wvnfs
vim-emu compute start -n fw <params>
vim-emu compute start —n ids <params>

X ﬂ
Client (1]

Entities
Extractor
chain vnfs

vim-emu network add -b -src
iperf-c:c—-ethl0 —-dst fw:in

vim-emu network add -b -src fw:out -dst
ids:in

vim-emu network add -b -src ids:out -dst
iperf-s:s—-eth

Client

Compiled SONATA-NFV commands

ﬁ /\
< @
- q
Ipeffﬁlent -~ l Iperf Server

S Firewall DS L -V X
é » OpenVSwitch ’ OpenVSwitch ‘
Web Client Web Server

NS NS

Resulting scenario

Learning IP network embedding
* Estimate network structure

network (20b) host (12b)
192.168.133.130/20 = 11000000.10101000.1000 0101.10000010

normalized network (32b) normalized host (32b)
11000000.10101000.10000000.00000000.00000000.00000000.00000101.10000010
Bo B1 Bo B3 By Bs Be B7

normalized source (host) IP addresses

Bo 1By Bz :

H Neurons 3

|| || || host [CTTTT7] Intermediate vector

P 3

representation Dj:lj:l Input vector :

]] Bj Byte i of normalized IP address :

1 N (in one-hot vector format)

> f] "h :

B Bling DBl > cost

- - —> :

- o lIrh - rsli2 2 i

| = : thop count T

f: Softsign TH I H H D
. | G H I H - real |
aCt|Vat|On : f —— — 2 R —— > f s hop count !
: N § o e i

1/(1+ | X |) ; I : : || i i || representation o
: o

>

=

normalized destination (server) IP addresses real hop count matrix

Automated generation of verifiable
security function chains

Security Function Chaining

*

‘ -

*

. *
Ll

*

FW Firewalls
LIPS Light IPS
H.IPS Heavy IPS
DLP Data Leakage
Prevention

Security Manager

Device

SDN Synaptic
Controller| | Checker
App - —
-ffse_is_'ﬂft‘ﬁay —
|
‘|7 ' R (.
Agent ! I
J I| e Ja___A
r~ Data Management Security
~ channel channel function

r

Service

!
o ———————————
L —

" | Remote |
| Dest.

Control flow Security
transmission processing

Automated generation of verifiable
security function chains

* Inference using logic programming

Rules for inferring elementary actions

dep/oyb/ock(aa pt) — bOtnet(a7 pt)

Logical statement
deploy rormard(a) < —worm(a, pt) A —botnet(a, pt)

stateless _firewall(t) = forward(169.45.223.16, t) o, forward(169.45.223.20,t) o ...
dpi(t) = inspect(169.45.223.16,t) o4 inspect(169.45.223.20,t) o4 ...
chain(t) = [stateless _firewall(t), dpi(t)]

Rules for inferring security functions to deploy Exar

stateless _firewall(t) =

O4+{ forward(a, t) : deploy ¢,pnara(a), @ € Addr} Corresponding Pyretic program
or O+{ block(a, pt, t) : deploy .. (a, pt), a € Addr, pt € Port }

stateless _firewall = match(dstip = 169.45.223.16) + match(dstip = 169.45.223.20) . ..

. . . dpi = InspectQuery(169.45.223.16) + InspectQuery(169.45.223.20) + . ..
Rules for inferring compositions paths chain — stateless firewall > dpi

dos chain = stateless firewall os, ids os, stateful firewall

Extracting attack patterns

Compute TDA Mapper algorithrm

TEANS distance
Darknet - & Z Matrix

Features
extraction

DBSCAN |graph
?.‘IJIZ? Clustering

function

@ P source

[]
Visualization

Summary and outlook

* Self-driving networks: challenges
— You can’t build a self-driving Citroén 2 CV

* Enabled by network programmability and
virtualisation: SDN, NVF, P4, ...

* Enabled by ML and Al based networking: data-driven
models

* How to place the human in the loop of self-driving
networks?

* Accountability

— How to test self-driving networks?

* 2.5 billion simulated miles during the course of self-driving car
development

* Crash tests

