
Connection ID

Design Team
A.K.A. WHAT’S THIS THING CALLED AGAIN?

Sequence in -13+

Sequence without Gaps (-13)

 No HoLB, because no packet number

gaps

 Easier to specify behavior:

 Use a higher sequence number than

ever before when starting a new path

 On each path, never use a sequence

number less than the highest you’ve

ever sent or received on that path

Seq. CID Token

-1 (A) F(A)

0 (B) F(B)

1 (C) F(C)

2 (D) F(D)

3 (E) F(E)

2

Here be dragons….

A
A
A
A

A

NCID:

B,C,D

3

Here be dragons….

A
A
A
A

A

NCID:

B,C,D

Whoops, I’m

out of CIDs!

Just gave him

three extras;

that’s plenty.

4

Raises some questions….

 It’s possible to become unclear whether a peer has actually used

a CID you’ve issued

 Given that, how do I know when the peer needs more CIDs?

5

Here be dragons….

A
A
A
A

A

B

C
C

Only packet

with B

disappears

Guess we’re

not using

B…!

6

SR with F(B)

Here be dragons….

A
A
A
A

A

B

C
C

Only packet

with B

disappears

B

Sometime

later, packet

is delivered
B

unknown!

Guess we’re

not using

B…!

7

Raises some questions….

 Over a long-lived connection with many CIDs, it’s impractical to

remember all CIDs ever associated with the connection

 Potential memory exhaustion attack

 Might require allocating load balancer state as well

 But when is it safe to “forget” a CID?

 Forget too early and peer can trigger a Stateless Reset by using a seemingly-

valid CID

 Circumstances where CIDs expire

 CID with encrypted payload and key rotation

8

Proposal: Frames

 NEW_CONNECTION_ID frame

 Declares a new CID which can be used for the connection

 CIDs are non-revocable – once issued, valid until peer releases

 RETIRE_CONNECTION_ID frame

 Sent by recipient of NCID to indicate that a CID will no longer be used

 …and the Stateless Reset Token will no longer be acknowledged

 Can be sent on a different path than the one where the CID was previously

used

9

Proposal: Rolling Forward

10

Same CID Different CID

Same IP :

Port

Trivially

Linkable

Highly

Linkable

Different

IP : Port

Highly

Linkable

Breaks

Linkability

 Change when peer changes CID

 Risk of looping

 Change when peer changes IP or port

 Doesn’t help when peer doesn’t

change port

Proposal: Rolling Forward

11

Same CID Different CID

Same IP :

Port

Trivially

Linkable

Highly

Linkable

Different

IP : Port

Highly

Linkable

Breaks

Linkability

 Change when peer changes CID

 Risk of looping

 Change when peer changes IP or port

 Doesn’t help when peer doesn’t

change port

Issues Explicitly Not Addressed

 Revocation of CIDs

 Primary case to need that is a connection spanning multiple rolls of the key

used to generate CIDs

 These keys should be very long-lived; closing connections or maintaining state for very
old connections seems acceptable

 CIDs from one path might not be useful on a different path

 Might need to improve for future multipath

 Negotiation of CID Pool Size

 If CID pool runs out, connection might close

 Issuer of CIDs is potentially consuming state to maintain many CIDs at once

 Must be able to limit number outstanding

12

Issues Explicitly Not Addressed

 Quick Issue / Expiry of CIDs and Retransmission

 Duplicate packets confuse things:

 Endpoint issues NEW_CID(A)

 Peer sends RETIRE_CID(A)

 Duplicate packet arrives with NEW_CID(A) again

 Current text: Remember the retired CIDs for 3xRTO, hope duplicates don’t

stretch longer than that

 Another solution: Sequence numbers

13

TBD

 Retiring CID while Stateless Reset in flight

 If you forget the Token as soon as RETIRE_CID is sent, a Stateless Reset currently

in flight won’t have any effect

 Probably okay – will trigger another Stateless Reset soon enough

 Remembering the Token for a while (3xRTO?) consumes state, but makes the SR

surface faster

14

Design Team Members

Mike Bishop

Eric Kinnear

Kazuho Oku

EKR

Martin Thomson

15

