
Connection ID

Design Team
A.K.A. WHAT’S THIS THING CALLED AGAIN?

Sequence in -13+

Sequence without Gaps (-13)

 No HoLB, because no packet number

gaps

 Easier to specify behavior:

 Use a higher sequence number than

ever before when starting a new path

 On each path, never use a sequence

number less than the highest you’ve

ever sent or received on that path

Seq. CID Token

-1 (A) F(A)

0 (B) F(B)

1 (C) F(C)

2 (D) F(D)

3 (E) F(E)

2

Here be dragons….

A
A
A
A

A

NCID:

B,C,D

3

Here be dragons….

A
A
A
A

A

NCID:

B,C,D

Whoops, I’m

out of CIDs!

Just gave him

three extras;

that’s plenty.

4

Raises some questions….

 It’s possible to become unclear whether a peer has actually used

a CID you’ve issued

 Given that, how do I know when the peer needs more CIDs?

5

Here be dragons….

A
A
A
A

A

B

C
C

Only packet

with B

disappears

Guess we’re

not using

B…!

6

SR with F(B)

Here be dragons….

A
A
A
A

A

B

C
C

Only packet

with B

disappears

B

Sometime

later, packet

is delivered
B

unknown!

Guess we’re

not using

B…!

7

Raises some questions….

 Over a long-lived connection with many CIDs, it’s impractical to

remember all CIDs ever associated with the connection

 Potential memory exhaustion attack

 Might require allocating load balancer state as well

 But when is it safe to “forget” a CID?

 Forget too early and peer can trigger a Stateless Reset by using a seemingly-

valid CID

 Circumstances where CIDs expire

 CID with encrypted payload and key rotation

8

Proposal: Frames

 NEW_CONNECTION_ID frame

 Declares a new CID which can be used for the connection

 CIDs are non-revocable – once issued, valid until peer releases

 RETIRE_CONNECTION_ID frame

 Sent by recipient of NCID to indicate that a CID will no longer be used

 …and the Stateless Reset Token will no longer be acknowledged

 Can be sent on a different path than the one where the CID was previously

used

9

Proposal: Rolling Forward

10

Same CID Different CID

Same IP :

Port

Trivially

Linkable

Highly

Linkable

Different

IP : Port

Highly

Linkable

Breaks

Linkability

 Change when peer changes CID

 Risk of looping

 Change when peer changes IP or port

 Doesn’t help when peer doesn’t

change port

Proposal: Rolling Forward

11

Same CID Different CID

Same IP :

Port

Trivially

Linkable

Highly

Linkable

Different

IP : Port

Highly

Linkable

Breaks

Linkability

 Change when peer changes CID

 Risk of looping

 Change when peer changes IP or port

 Doesn’t help when peer doesn’t

change port

Issues Explicitly Not Addressed

 Revocation of CIDs

 Primary case to need that is a connection spanning multiple rolls of the key

used to generate CIDs

 These keys should be very long-lived; closing connections or maintaining state for very
old connections seems acceptable

 CIDs from one path might not be useful on a different path

 Might need to improve for future multipath

 Negotiation of CID Pool Size

 If CID pool runs out, connection might close

 Issuer of CIDs is potentially consuming state to maintain many CIDs at once

 Must be able to limit number outstanding

12

Issues Explicitly Not Addressed

 Quick Issue / Expiry of CIDs and Retransmission

 Duplicate packets confuse things:

 Endpoint issues NEW_CID(A)

 Peer sends RETIRE_CID(A)

 Duplicate packet arrives with NEW_CID(A) again

 Current text: Remember the retired CIDs for 3xRTO, hope duplicates don’t

stretch longer than that

 Another solution: Sequence numbers

13

TBD

 Retiring CID while Stateless Reset in flight

 If you forget the Token as soon as RETIRE_CID is sent, a Stateless Reset currently

in flight won’t have any effect

 Probably okay – will trigger another Stateless Reset soon enough

 Remembering the Token for a while (3xRTO?) consumes state, but makes the SR

surface faster

14

Design Team Members

Mike Bishop

Eric Kinnear

Kazuho Oku

EKR

Martin Thomson

15

